精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是直角梯形,底面上的点

1求证:平面

2,若的中点,且直线与平面所成角的正弦值为,求二面角的余弦值

【答案】1证明见解析2

【解析】

试题分析:1平面平面,得出,再根据勾股定理,证得,再利用线面垂直的判定定理,即可证明平面2为原点,建立空间直角坐标系,设为平面的法向量,由,求得平面的一个法向量,再利用向量的运算,即可得二面角为锐角余弦值

试题解析:1证明:平面平面

由题意知

,又

平面

2解:以为原点,建立空间直角坐标系如图所示,

,设

为平面的法向量,则

,取,则

设直线与平面所成角为

依题意,

1

平面为平面的法向量,

时,

易得二面角为锐角,所以其余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次篮球定点投篮训练中,规定每人最多投3次,在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次.某同学在处的投中率,在处的投中率为,该同学选择先在处投第一球,以后都在处投,且每次投篮都互不影响,用表示该同学投篮训练结束后所得的总分,其分布列为:


0

2

3

4

5


0.03





1)求的值;

2)求随机变量的数学期望

3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1若存在使得≥0成立,求的范围

2求证:当>1时,在1的条件下,成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆C的标准方程;

(2)若直线与椭圆相交于两点,且,求证:的面积为定值并求出定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线在点处的切线斜率为0.

(1)讨论函数的单调性;

(2)在区间上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个家庭有两个小孩,把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点有(

A.(男,女),(男,男),(女,女)

B.(男,女),(女,男)

C.(男,男),(男,女),(女,男),(女,女)

D.(男,男),(女,女)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,讨论函数的单调性;

(2)设,当时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】单调递增数列中, ,且成等差数列, 成等比数列,.

(1)求证:数列为等差数列

求数列通项公式;

(2)设数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

⑴从区间内任取一个实数,设事件表示“函数在区间上有两个不同的零点”,求事件发生的概率;

⑵若联系掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件表示“上恒成立”,求事件发生的概率.

查看答案和解析>>

同步练习册答案