精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

        如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

   (I)求出该几何体的体积;

   (II)求证:EM∥平面ABC

 
   (III)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定点N的位置;     若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

【解析】解法一:由题意,Ea⊥平面ABC,DC⊥平面ABC,AE//DC,AE=2,

DC=4,AB⊥AC,且AE=AC=2,

   (I)∵EA⊥平面ABC,∴ea⊥ab, 又ab⊥ac,

    ∴ab⊥平面acde ,                 …………2分

∴四棱锥b-acde的高h=ab=2,梯形acde的面积S= 6

 
即所求几何体的体积为4    ………………4分

   (II)证明:∵m为db的中点,取bc中点G,连接em,mG,aG,

∴ mG∥DC,且

∴ mG   ae,∴四边形aGme为平行四边形, ……6分

∴em∥aG, 又AG平面ABC  

AG平面ABC,

∴EM∥平面ABC.……8分

   (III)由(II)知,em∥aG,

又∵平面BCD⊥底面ABC,aG⊥bc,∴AG⊥平面BCD

∴EM⊥平面BCD,又∵EM平面BDE,

∴平面BDE⊥平面BCD                10分

在平面BCD中,过M作MN⊥DB交DC于点N,

∴MN⊥平面BDE  点n即为所求的点  ………………10分

 
∴ 边DC上存在点N,满足DN=DC时,

有MN⊥平面BDE.         …………12分

解法二:(I)(同解法一)  …………4分

   (II)由(I)知EA⊥AB,EA⊥AC,AB⊥AC。

∴以A为原点如图建立空间直角坐标系A—xyz  ………5分

则A(0,0,0),B(2,0,0),C(0,2,0),E(0,0,2),

D(0,2,4),M(1,1,2),

  …………6分

显然,为平面ABC的法向量,

=0  …………7分

∴EM∥平面ABC.          ……8分

   (III)由(II)得

设在棱DC上存在点,使MN⊥平面BDE,

 …………9分

  …………11分

∴在棱DC上存在点N(0,2,1),使MN⊥平面BDE.         …………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案