精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)=t恰有3个不同的实数根,则实数t的取值范围是(0,2).

分析 由题意,画出已知函数的图象,结合图象找出满足与y=t有三个交点的t的范围.

解答 解:已知函数的图象如图:方程f(x)=t恰有3个不同的实数根,
则圆锥函数图象与y=t有三个交点,由图象可知,当t∈(0,2)满足题意;
故答案为:(0,2)

点评 本题考查的知识点是函数的零点个数的判定定理,分段函数的应用,考查数形结合的思想方法;难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=1$,点D是BC的中点.
( I)求证:$\overrightarrow{AD}=\frac{{\overrightarrow{AB}+\overrightarrow{AC}}}{2}$;
( II)直线l过点D且垂直于BC,E为l上任意一点,求证:$\overrightarrow{AE}•(\overrightarrow{AB}-\overrightarrow{AC})$为常数,并求该常数;
( III)如图2,若$cos=\frac{3}{4}$,F为线段AD上的任意一点,求$\overrightarrow{AF}•(\overrightarrow{FB}+\overrightarrow{FC})$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=\sqrt{2x-4}+lg(5-x)$的定义域为A,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个由圆柱和正四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.4π+4B.$4π+\frac{4}{3}$C.2π+4D.$2π+\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C对边的边长分别a,b,c,f(x)=2sinxcos(x+A)+sin(B+C)(x∈R),函数f(x)的图象关于点$({\frac{π}{3},0})$对称.
(I)求A;
(II)若b=6,△ABC的面积为$6\sqrt{3}$,求$\overrightarrow{AC}•\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点M在圆C1:x2+y2+2x+8y-8=0上,点N在圆C2:x2+y2-4x-5=0上,则|MN|的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)上的点A到焦点F距离为4,若在y轴上存点B(0,2)使得$\overrightarrow{BA}$$•\overrightarrow{BF}$=0,则该抛物线的方程为(  )
A.y2=8xB.y2=6xC.y2=4xD.y2=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2-x-2(-5≤x≤5),在其定义域内任取一点x0,使f(x0)<0的概率是(  )
A.$\frac{1}{10}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案