精英家教网 > 高中数学 > 题目详情
已知抛物线上一点到其焦点的距离为
(I)求的值;
(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点的垂线交于另一点.若的切线,求的最小值.
(Ⅰ);(Ⅱ)
解:(Ⅰ)由抛物线方程得其准线方程:,根据抛物线定义:点到焦点的距离等于它到准线的距离,即,解得
抛物线方程为:,将代入抛物线方程,解得
(Ⅱ)由题意知,过点的直线斜率存在且不为0,设其为
,当  则
联立方程,整理得:
即:,解得
,而直线斜率为
,联立方程
整理得:,即:
,解得:,或

而抛物线在点N处切线斜率:
MN是抛物线的切线,,整理得
,解得(舍去),或 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆,它的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.⑴求椭圆的方程;⑵设椭圆的左焦点为,左准线为,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求动点的轨迹的方程;⑶将曲线向右平移2个单位得到曲线,设曲线的准线为,焦点为,过作直线交曲线两点,过点作平行于曲线的对称轴的直线,若,试证明三点为坐标原点)在同一条直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.
(Ⅱ)观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是
(1)若P是圆M上的任意一点,求证:是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

对应的曲线中存在“自公切线”的有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,动点P到两点(-
3
,0),(
3
,0)的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(-1,0)且与曲线C交于A,B两点.
(1)求曲线C的轨迹方程;
(2)若AB中点横坐标为-
1
2
,求直线AB的方程;
(3)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点.
(1)求点P的轨迹H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),且离心率为
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点N(
2
,0)且斜率为
6
3
的直线l与椭圆C交于A,B两点,求证:
OA
OB
=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点且有,则点的轨迹是(    )
A.椭圆B.双曲线C.线段D.两射线

查看答案和解析>>

同步练习册答案