精英家教网 > 高中数学 > 题目详情

【题目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正视图的投影面α内,且AB与投影面α所成角为θ(30°≤θ≤60°),设正视图的面积为m,侧视图的面积为n,当θ变化时,mn的最大值是(

A.2
B.4
C.3
D.4

【答案】C
【解析】解:AB与投影面α所成角为θ时,平面ABC如下图所示:∴BC= ,∠ACE=60°﹣θ,
∴BD=ABsinθ,DA=ABcosθ,AE=ACcos(60°﹣θ),
ED=DA+AE=cos(60°﹣θ)+cosθ
故正视图的面积为m=ED×AA1=2[cos(60°﹣θ)+cosθ]
侧视图的面积为n=BD×AA1=2sinθ
∴mn=4sinθ[cos(60°﹣θ)+cosθ]
=4sinθ[cos60°cosθ+sinθsin60°)+cosθ]
=sin2θ+2 sin2θ+2sin2θ
=3sin2θ+ cos2θ
=2 sin(2θ﹣30°)+
∵30°≤θ≤60°
∴30°≤2θ﹣30°≤90°,
所以:2 ≤mn≤3
故得mn的最大值为3
故选:C.

【考点精析】利用简单空间图形的三视图对题目进行判断即可得到答案,需要熟知画三视图的原则:长对齐、高对齐、宽相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若 =1,则| |=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为 ),传输信息为,其中运算规则为:,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )

A. 11010 B. 01100 C. 10111 D. 00011

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为△ABC内一点,且2 =t ,若B,O,D三点共线,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)已知 是奇函数,求常数m的值;
(2)画出函数y=|3x﹣1|的图象,并利用图象回答:k为何值时,方程|3x﹣1|=k无解?有一解?有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为

ξ

0

1

2

3






(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;

(Ⅱ)的值;

(Ⅲ)求数学期望ξ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图: PA⊥平面ABC,∠ACB=90°且PA=AC=BC=,则异面直线PB与AC所成角的正切值等于________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及数列{an}的通项公式;
(3)设bn=(﹣1)n1(n+1)2anan+1(n∈N*),求数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案