精英家教网 > 高中数学 > 题目详情

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】将平面展开图还原成正方体如图所示).

对于①,由图形知AFGC异面垂直,故①正确;

对于②,BDGC显然成异面直线EBEDBMGC所以即为异面直线BDGC所成的角或其补角)在等边△BDM中, 所以异面直线BDGC所成的角为,故②正确;

对于③,BDMN为异面垂直,故③错误;

对于④,由题意得GD⊥平面ABCD所以∠GBDBG与平面ABCD所成的角但在RtBDG中,∠GBD不等于45 ,故④错误

综上可得①②正确B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为,上、下顶点分别为,点在椭圆上,且异于点,直线与直线 分别交于点面积的最大值为.

1)求椭圆的标准方程;

2)求线段的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每个点的横坐标变为原来的4倍,纵坐标变为原来的3倍,得曲线以坐标原点为极点, 轴的非负轴分别交于半轴为极轴建立极坐标系,直线的极坐标方程为: 且直线在直角坐标系中与轴分别交于两点.

1)写出曲线的参数方程,直线的普通方程;

2)问在曲线上是否存在点使得的面积若存在求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为

Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;

Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数.时, .

(1) 求曲线在点处的切线方程;

(2) 若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上动点与两个定点 ,且.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中轨迹为,过点的直线所截得的线段长度为8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.

(1)若花店一天购进17枝玫瑰花, 表示当天的利润(单位:元),求的分布列及数学期望;

(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.

查看答案和解析>>

同步练习册答案