精英家教网 > 高中数学 > 题目详情
若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m的取值范围是
(-∞,-4)∪(2,+∞)
(-∞,-4)∪(2,+∞)
分析:由绝对值的意义可得|x-1|+|x+m|的最小值等于|1+m|,由题意可得|1+m|>3,由此解得实数m的取值范围.
解答:解:由于|x-1|+|x+m|表示数轴上的x对应点到1和-m的距离之和,它的最小值等于|1+m|,
由题意可得|1+m|>3,解得 m>2,或 m<-4,
故答案为 (-∞,-4)∪(2,+∞).
点评:本题主要考查绝对值的意义,绝对值不等式的解法,得到|1+m|>3,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
x-m
g(x)
x
对任意不等于1的正实数都成立,则实数m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)若关于x的不等式|x+2|+|x-1|>log2a的解集为R,则实数a的取值范围是
(0,8)
(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)设a>0,若关于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,则a的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安二模)若关于x的不等式|x+1|+|x-m|>4的解集为R,则实数m的取值范围
{m|m>3或m<-5}
{m|m>3或m<-5}

查看答案和解析>>

同步练习册答案