精英家教网 > 高中数学 > 题目详情

【题目】在数列中,

(I)求的值,由此猜想数列的通项公式:

(Ⅱ)用数学归纳法证明你的猜想.

【答案】

【解析】

试题(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题;(2)用数学归纳法证明等式问题,要先看项,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,由于猜想证明的前提和对象,务必保证猜想的正确性,同时必须严格按照数学归纳法的步骤书写.

试题解析:解a1a2a3a4,猜想an,下面用数学归纳法证明:

n1时,a1,猜想成立.

假设当nkk≥1k∈N*)时猜想成立,即

则当nk1时,

所以当nk1时猜想也成立,

①②知,对n∈N*an都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为增强市民节能环保意识,某市面向全市征召义务宣传志愿者,现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示:

分组(单位:岁)

频数

频率

5

0.05

0.20

35

30

0.30

10

0.10

总计

100

1.00

1)频率分布表中的①②位置应填什么数据?

2)补全如图所示的频率分布直方图,再根据频率分布直方图估计这500名志愿者中年龄在岁的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f1)=–2f1.5)=0.625f1.25≈–0.984f1.375≈–0.260,关于下一步的说法正确的是( )

A. 已经达到精确度的要求,可以取1.4作为近似值

B. 已经达到精确度的要求,可以取1.375作为近似值

C. 没有达到精确度的要求,应该接着计算f1.4375

D. 没有达到精确度的要求,应该接着计算f1.3125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,过点作斜率为的直线交椭圆两点,当直线垂直于轴时,

(1)求椭圆的方程

(2)当变化时,在轴上是否存在点,使得是以为底的等腰三角形?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,这两个函数图象的交点个数为____个.(参考数值:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,点边上,且.

(1)若,求

(2)若,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是,假设每局比赛结果相互独立.

()比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;

()比赛采用三局两胜制,设随机变量为甲在一场比赛中获胜的局数,求的分布列和均值;

(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.

(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?

(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若直线与曲线分别交于两点直线,且曲线处的切线与处的切线相互平行,求正数的最大值;

(2)若有三个不同的零点,求的取值范围.

查看答案和解析>>

同步练习册答案