精英家教网 > 高中数学 > 题目详情
(2012•枣庄二模)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:DF⊥平面PAF;
(2)在线段AP上取点G使AG=
14
AP,求证:EG∥平面PFD.
分析:(1)通过证明DF⊥AF,DF⊥AF,PA∩AF=A,即可证明DF⊥平面PAF;
(2)在AD上取点H,使AH=
1
4
AD,取AD的中点Q,连接EH、GH、BQ,由EH是△ABQ的中位线,通过证明平面EGH∥平面PFD,然后证明EG∥平面PFD.
解答:解:(1)在矩形ABCD中,由条件得AF=DF=
2

又AD=2,所以AF2+DF2=AD2
所以DF⊥AF.
因为PA⊥平面ABCD,DF?平面ABCD,
所以DF⊥平面ABCD,所以DF⊥AF,PA∩AF=A,
所以DF⊥平面PAF;
(2)在AD上取点H,使AH=
1
4
AD,取AD的中点Q,
连接EH、GH、BQ,由EH是△ABQ的中位线,
知EH∥BQ.
而BQ∥DF,所以EH∥DF.
又EH不在平面PFD,DF?平面PFD,DF?平面PFD,
所以EH∥平面PFD.
由AG=
1
4
AP,AH=
1
4
AD,可知GH∥PD,
又GH不在平面PDF,PD?平面PDF,
所以GH∥平面PFD,又EH∥平面PDF,GH∩EH=H,
所以
平面EGH∥平面PFD,
所以EG∥平面PFD.
点评:本题考查直线与平面垂直的判定,直线与平面平行的判定,考查逻辑推理能力,空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知定义在R上的函数f(x)满足f(x+
3
2
)=-f(x)
,且函数y=f(x-
3
4
)
为奇函数,给出三个结论:
①f(x)是周期函数;②f(x)是图象关于点(-
3
4
,0)对称;③f(x)是偶函数.其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)设等比数列{an}的前n项之和为Sn,若8a2+a5=0,则
S5
S3
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)α是第四象限角,cosα=
3
5
,则cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知i为虚数单位,复数z=(2-i)(1+i)2的实部为a,虚部为b,则logab=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知点Q(0,2
2
)及抛物线
y
2
 
=4x
上一动点P(x,y),则x+|PQ|的最小值是
2
2

查看答案和解析>>

同步练习册答案