精英家教网 > 高中数学 > 题目详情
15.已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的最小值.

分析 由题意画出图形,过A作准线的垂线,交抛物线于点P,由题意可得P为使|PF|+|PA|为最小值的点,利用点到直线的距离得答案.

解答 解:如图,

由x2=8y,得2p=8,p=4,则$\frac{p}{2}=2$,
∴F(0,2),抛物线的准线方程为y=-2.
过A作准线的垂线,交抛物线于点P,
由抛物线定义可知,P点为使|PF|+|PA|为最小值的点,
此时|PF|+|PA|的最小值为4-(-2)=6.

点评 本题考查抛物线的简单性质,考查了抛物线的定义,考查数形结合的解题思想方法与数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线被圆(x-a)2+y2=a2截得的弦长为$\sqrt{2}$a.则双曲线C的离心率为(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.角β的终边和角α=-1035°的终边相同,则cosβ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F为椭圆的右焦点,点A,B分别为椭圆的上下顶点,过点B作AF的垂线,垂足为M.
(1)若$a=\sqrt{2}$,△ABM的面积为1,求椭圆方程;
(2)是否存在椭圆,使得点B关于直线AF对称的点D仍在椭圆上.若存在,求椭圆的离心率的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$,弦AB的中点是M(3,1).
(1)求过点M且垂直于长轴的弦长;
(2)求弦AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中:①3牛顿的力一定大于2牛顿的力;②长度相等的向量叫做相等向量;③一个向量的相等向量有无数多个;④若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$;⑤单位向量都大于零向量.正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在长方形ABCD-A1B1C1D1中,E,F,G分别是AA1,CC1,DD1的中点,若∠EBF=120°,则∠AGC=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=|ex-bx|,其中e为自然对数的底.
(1)当b=1时,求曲线f(x)在x=1处的切线方程;
(2)若函数y=f(x)有且只有一个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)=$\frac{x+1}{x-1}$,则y=f-1($\frac{1}{x}$)的表达式是(  )
A.$\frac{x+1}{x-1}$B.$\frac{1+x}{1-x}$C.$\frac{(\frac{1}{x}+1)^{-1}}{\frac{1}{x}-1}$D.$\frac{(1+x)^{-1}}{x-1}$

查看答案和解析>>

同步练习册答案