精英家教网 > 高中数学 > 题目详情

设函数(其中),且方程的两个根分别为.
(1)当且曲线过原点时,求的解析式;
(2)若无极值点,求的取值范围.

(1);(2)实数的取值范围是.

解析试题分析:(1)先将代入函数的解析式,利用“曲线过原点”先求出的值,然后求出二次函数的解析式,利用“为二次方程的两个根”并结合韦达定理求出的值,最终确定函数的解析式;(2)先利用“为二次方程的两个根”并结合韦达定理确定的关系,然后求出,对进行分类讨论,将无极值点进行转化,对进行检验;当时,得到,从而求出实数的取值范围.
试题解析:(1)当时,
由于曲线过原点,则有
,令
由题意知,是二次函数的两个零点,由韦达定理得

(2)
由于是二次函数的两个零点,由韦达定理得
解得

时,,令,解得,当时,,当
此时为函数的极小值点,不合乎题意;
,由于函数无极值点,则
,化简得,解得
故实数的取值范围是.
考点:1.导数;2.韦达定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.

(1)求的解析式;
(2)若常数,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间并比较的大小关系
(Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若对一切恒成立,求的取值范围;
(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若处取得极值,求常数的值;
(2)设集合,若元素中有唯一的整数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间上是减函数,求实数的最小值;
(Ⅲ)若存在是自然对数的底数)使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若直线与曲线上有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

查看答案和解析>>

同步练习册答案