精英家教网 > 高中数学 > 题目详情
4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{5}$=1(a>$\sqrt{5}$)的焦点为F1,F2,且离心率e=$\frac{2}{3}$,若点P在椭圆上,|PF1|=4,则|PF2|的值为(  )
A.2B.6C.8D.14

分析 由椭圆的焦点在x轴上,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}-5}$,则离心率e=$\frac{c}{a}$=$\frac{2}{3}$,即$\frac{{a}^{2}-5}{{a}^{2}}$=$\frac{4}{9}$,解得:a2=9,a=3,根据椭圆的定义:|PF1|+|PF2|=6,即|PF2|=2.

解答 解:椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{5}$=1(a>5),椭圆的焦点在x轴上,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}-5}$,
则离心率e=$\frac{c}{a}$=$\frac{2}{3}$,即$\frac{{a}^{2}-5}{{a}^{2}}$=$\frac{4}{9}$,解得:a2=9,a=3
∴椭圆的长轴长为2a=6,
由椭圆的定义可知:|PF1|+|PF2|=6,即|PF2|=2,
故选A.

点评 本题考查椭圆的标准方程及简单几何性质,考查椭圆的定义应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,a7=$\frac{1}{64}$,a2=$\frac{1}{2}$.
(Ⅰ)求数列{an}的通项公式及前n项和为Sn
(Ⅱ)若bn=log2(2-Sn),数列{bn}的前n项和为Tn,求数列$\left\{{\frac{1}{T_n}}\right\}$(n≥2)的前n项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在区间[0,10]中任意取一个数,求它与4之和大于10的概率
  (2)在区间[0,10]中任意取两个数,求它们之和大于9的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:$2{log_5}10+{log_5}0.25+{2^{{{log}_2}3}}$
(2)计算:${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知logx8=3,则x的值为(  )
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,长轴长为4.
(1)求椭圆C的方程;
(2)设动直线l1:y=kx+m与椭圆C有且只有一个公共点P,过右焦点F作直线l2与直线l1交与点Q,且$\overrightarrow{PF}$•$\overrightarrow{FQ}$=0.求证:点Q在定直线上,并求出定直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-$\frac{4}{x}$,其中a为常数
(1)根据a的不同值,判断函数f(x)的奇偶性,并说明理由;
(2)若a∈(-2,-1),判断函数f(x)在($\frac{1}{2}$,1)上的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)设p:x∈[$\frac{π}{4}$,$\frac{π}{2}$],q:|f(x)-m|<3,若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2-1,值域为{1,7}的“合一函数”共有(  )
A.10个B.9个C.8个D.4个

查看答案和解析>>

同步练习册答案