精英家教网 > 高中数学 > 题目详情

【题目】设min{mn}表示mn二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为

A.-4B.-3C.-2D.0

【答案】C

【解析】

先求得函数的解析式,并求出它的值域.根据二次函数图像的特点,对分成两类讨论,求出使得的值域是值域的子集成立的的范围,由此求得的最大值.

,解得,故当时,,当时,,所以.所以当时,函数的值域为,当时,的值域为,所以的值域为.函数,它的图像开口向上,对称轴为,则当时,函数上的值域为,是的子集,符合题意.时,函数上的值域为,它是的子集,故,解得.综上所述,满足题意的的取值范围是.所以的最大值为,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定一个n项的实数列,任意选取一个实数c,变换Tc)将数列a1a2an变换为数列|a1c||a2c||anc|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第kkN*)次变换记为Tkck),其中ck为第k次变换时选择的实数.如果通过k次变换后,数列中的各项均为0,则称T1c1),T2c2),Tkck)为k次归零变换

1)对数列:1357,给出一个k次归零变换,其中k≤4

2)证明:对任意n项数列,都存在n次归零变换

3)对于数列12233nn,是否存在n1次归零变换?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线过点且倾斜角为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,若曲线的极坐标方程为,且直线与曲线相交于,两点.

1)写出曲线的直角坐标方程和直线的参数方程;

2)若,求直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在点处的切线方程;

(2)当时,求函数的单调递增区间;

(3)当时,证明: (其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc.已知asinA+B)=csin.

1)求A

2)求sinBsinC的取值范围;

3)若△ABC的面积为,周长为8,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别在轴,轴上运动,,点在线段上,且.

1)求点的轨迹的方程;

2)直线交于两点,,若直线的斜率之和为2,直线是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥SABCD中,底面ABCD为长方形,SB⊥底面ABCD,其中BS=2BA=2BC=λλ的可能取值为:①;②;③;④;⑤λ=3

1)求直线AS与平面ABCD所成角的正弦值;

2)若线段CD上能找到点E,满足AESE,则λ可能的取值有几种情况?请说明理由;

3)在(2)的条件下,当λ为所有可能情况的最大值时,线段CD上满足AESE的点有两个,分别记为E1E2,求二面角E1SBE2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是动点,以为直径的圆与圆内切.

(1)求的轨迹的方程;

(2)设是圆轴的交点,过点的直线与交于两点,直线交直线于点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

同步练习册答案