精英家教网 > 高中数学 > 题目详情
11.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$(其中α为参数),曲线${C_2}:{({x-1})^2}+{y^2}=1$,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)若射线$θ=\frac{π}{3}({ρ>0})$与曲线C1,C2分别交于A,B两点,求|AB|.

分析 (Ⅰ)利用三种方程的互化方法,求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)将$θ=\frac{π}{3}({ρ>0})$代入曲线C1的极坐标方程得ρ2-2ρ-3=0,解得ρ1=3,同理将$θ=\frac{π}{3}({ρ>0})$曲线C2的极坐标方程得ρ2=1.可得|AB|=|ρ12|=2.

解答 (1)由$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$,有曲线C1的普通方程为(x-2)2+y2=7.
把x=ρcosθ,y=ρsinθ,代入(x-1)2+y2=1,得(ρcosθ-1)2+(ρsinθ)2=1,化简得,曲线C2的极坐标方程ρ=2cosθ.------(5分)
(2)依题意可设$A({{ρ_1},\frac{π}{3}}),B({{ρ_2},\frac{π}{3}})$.因为曲线C1的极坐标方程为ρ2-4ρcosθ-3=0,
将$θ=\frac{π}{3}({ρ>0})$代入曲线C1的极坐标方程得ρ2-2ρ-3=0,解得ρ1=3.
同理将$θ=\frac{π}{3}({ρ>0})$曲线C2的极坐标方程得ρ2=1.所以|AB|=|ρ12|=2.------(10分)

点评 本题考查三种方程的互化,考查极坐标方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(x+2)(x-t)}{{x}^{2}}$为偶函数.
(1)求实数t值;
(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5-1,判断λ与E的关系;
(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2-$\frac{5}{a}$,2-$\frac{5}{b}$],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)求出表中的x,y
(2)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦点,过F1的直线l与双曲线分别交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是$\frac{353π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列说法,其中正确的个数是(  )
①命题“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”;
②命题“若x=y,则sinx=siny”的否命题是:“若x=y,则sinx≠siny”;
③“7<k<9”是“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦点在x轴上的椭圆”的充分不必要条件;
④“m=2”是“l1:2x+(m+1)y+4=0与l2:mx+3y-2=0平行”的充要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>1,f(x)=x2-ax,当x∈(-1,1)时,均有f(x)<$\frac{2}{3}$,则实数a的取值范围是(  )
A.(1,2)B.(1,3]C.(1,$\frac{3}{2}$)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5π}{2}$-β),则α+β=$\frac{5π}{12}$.

查看答案和解析>>

同步练习册答案