精英家教网 > 高中数学 > 题目详情

【题目】某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:

汽车型号

I

II

III

IV

V

回访客户(人数)

250

100

200

700

350

满意率

0.5

0.3

0.6

0.3

0.2

满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.

(Ⅰ) 从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为________;

(Ⅱ) 从所有的客户中随机选取1个人,估计这个客户满意的概率;

(Ⅲ) 汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)

【答案】(Ⅰ)0.4(Ⅱ)(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.

【解析】

(Ⅰ)从III型号汽车的回访客户中随机选取1人,利用对立事件概率计算公式能求出这个客户不满意的概率.(Ⅱ)先求出样本中的回访客户的总数和样本中满意的客户人数,由此能估计这个客户满意的概率.(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.

解:(Ⅰ)由表格可知满意的为0.6,所以不满意的为

(Ⅱ)由题意知,样本中的回访客户的总数是,

样本中满意的客户人数是

,

所以样本中客户的满意率为.

所以从所有的客户中随机选取1个人,估计这个客户满意的概率为.

(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,对于函数有下述四个结论:

①函数在其定义域上为增函数;

②对于任意的,都有成立;

有且仅有两个零点;

④若在点处的切线也是的切线,则必是零点.

其中所有正确的结论序号是(

A.①②③B.①②C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与直线相切且与圆外切。

(1)求圆心的轨迹的方程;

(2)设第一象限内的点在轨迹上,若轴上两点,满足. 延长分别交轨迹两点,若直线的斜率,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为探索课堂教学改革,惠来县某中学数学老师用传统教学和导学案两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为成绩优良”.

Ⅰ)分析甲、乙两班的样本成绩,大致判断哪种教学方式的教学效果更佳,并说明理由;

Ⅱ)由以上统计数据完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为成绩是否优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

参考公式:,其中是样本容量.

独立性检验临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点A(10)F(20),定直线lx,不在x轴上的动点P与点F的距离是它到直线l的距离的2.设点P的轨迹为E,过点F的直线交EBC两点,直线ABAC分别交l于点MN

)求E的方程;

)试判断以线段MN为直径的圆是否过点F,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.

1)求的值;

2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?

文科生

理科生

合计

获奖

6

不获奖

合计

400

3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究患肺癌与是否吸烟有关,某机构做了一次相关调查,制成如下图的列联表,其中数据丢失,但可以确定的是不吸烟人数与吸烟人数相同,吸烟患肺癌人数占吸烟总人数的;不吸烟的人数中,患肺癌与不患肺癌的比为.

患肺癌

不患肺癌

合计

吸烟

不吸烟

总计

(1)若吸烟不患肺癌的有4人,现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率;

(2)若研究得到在犯错误概率不超过0.001的前提下,认为患肺癌与吸烟有关,则吸烟的人数至少有多少?

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数).

(1)证明:①当时,

②当时,.

(2)是否存在最大的整数,使得函数在其定义域上是增函数?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案