精英家教网 > 高中数学 > 题目详情
6.直三棱柱ABC-A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1,则CN与AM所成角的余弦值等于(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{30}}{10}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{70}}{10}$

分析 以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出CN与AM所成角的余弦值.

解答 解:以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,

设BC=AC=CC1=2,
则C(0,0,0),N(1,0,2),A(2,0,0),M(1,1,2),
$\overrightarrow{CN}$=(1,0,2),$\overrightarrow{AM}$=(-1,1,2),
设CN与AM所成角为θ,
则cosθ=$\frac{|\overrightarrow{CN}•\overrightarrow{AM}|}{|\overrightarrow{CN}|•|\overrightarrow{AM}|}$=$\frac{3}{\sqrt{5}•\sqrt{6}}$=$\frac{\sqrt{30}}{10}$.
∴CN与AM所成角的余弦值为$\frac{\sqrt{30}}{10}$.
故选:B.

点评 本题考查两直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图是一个三棱锥的三视图,则该三棱锥的外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{9}+\frac{y^2}{25}=1$的离心率=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,则$\frac{3-i}{2+i}$对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-1|+|2x+5|,f(x)-m≥0恒成立.
(I)求实数m的取值范围;
(Ⅱ)若m的最大值为n,解不等式|x-3|-2x≤2n-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(n)=(1+$\frac{1}{n}$)(1+$\frac{1}{n+1}$)…(1+$\frac{1}{n+n}$)用数学归纳法证明f(n)≥3,在假设n=k时成立后,f(k+1)与f(k)的关系是f(k+1)=f(k)•$\frac{(1+\frac{1}{2k+1})(1+\frac{1}{2k+2})}{1+\frac{1}{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某盒子中装有标号分别为1、2、3、4、5的同质小球各2个,现从中一次性取出3个小球.
(I)求取出的3个小球上的最小标号为3的概率;
(Ⅱ)设X表示取出的3个小球上的最小标号,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P是曲线f(x)=x3-x上的点,且点P的横坐标是1.
(I)求证:函数f(x)在[1,+∞)上单调递增;
(Ⅱ)求曲线f(x)在点P处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知4x2+3y2=12,求x-3y的范围.

查看答案和解析>>

同步练习册答案