精英家教网 > 高中数学 > 题目详情
15.不等式$\frac{x+1}{2-x}$≤0的解集为(  )
A.[-2,1]B.[-1,2]C.[-1,2)D.(-∞,-1]∪(2,+∞)

分析 将原不等式转化为不等式组,解出即可.

解答 解:由不等式$\frac{x+1}{2-x}$≤0,
可化为$\left\{\begin{array}{l}{x+1≤0}\\{2-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+1≥0}\\{2-x<0}\end{array}\right.$,
解得:x≤-1或x>2,
故选:D.

点评 本题考查了解不等式问题,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x-1)=x2+(2a-2)x+3-2a
(1)求实数a的值,使f(x)在区间[-5,5]上的最小值为-1;
(2)已知函数g(x)=2x+$\sqrt{x+1}$,对任意使g(x)有意义的实数x1,总存在实数x2,使g(x1)=f(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,a2=3,S5=25,正项数列{bn}满足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$对一切正整数n均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=eax+2x(x∈R)有大于零的极值点,则实数a的取值范围是(  )
A.a>-2B.a<-2C.a$>-\frac{1}{2}$D.a$<-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1($0,-\sqrt{3})$,F2($0,\sqrt{3})$,
(Ⅰ)求曲线C的方程;
(Ⅱ)已知直线$l:y=kx+\sqrt{3}$与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,求目标函数Z=y-2x的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.若p∧q为假命题,则p、q均为假命题
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与函数f(x)=|x|表示同一函数的是(  )
A.f(x)=$\frac{{x}^{2}}{|x|}$B.f(x)=$\sqrt{{x}^{2}}$C.f(x)=($\sqrt{x}$)2D.f(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论中,正确的是(  )
A.2014cm长的有向线段不可能表示单位向量
B.若0是直线l上的一点,单位长度已选定,则l上有且只有两个点A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是单位向量
C.方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量
D.一人从A点向东走500米到达B点,则$\overrightarrow{AB}$不能表示这个人从A点到B点的位移

查看答案和解析>>

同步练习册答案