精英家教网 > 高中数学 > 题目详情

已知过抛物线y2=4x焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=______.

 

【答案】

2

【解析】

试题分析:焦点坐标,准线方程,由|AF|=2可知点A到准线的距离为2,

所以轴,

考点:抛物线定义及直线与抛物线相交的弦长问题

点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,依据定义可实现两个距离的转化

 

练习册系列答案
相关习题

科目:高中数学 来源:山东省潍坊市三县2012届高三上学期12月联考数学理科试题 题型:022

已知AB是过抛物线y2=2x焦点的弦,|AB|=4,则AB中点的横坐标是________

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知动直线l过点 P(4,0),交抛物线y2=2mx(m>0)于A、B两点,O为PQ的中点.(1)求证:

∠AQP=∠BQP.(2)当m=2时,是否存在垂直于x轴的直线l′被以AP为直径的圆所截得的弦长恒为定值?如果存在,求出l′的方程;如果不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中的抛物线上是否存在点D,使得|DB|=|DC|成立?如果存在,求出点D的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题

(13分)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点

    (1)当A点坐标为(8,4)时,求直线EF的方程;

    (2)当A点坐标为(2,2)时,求直线MN的方程;

    (3)当A点的横坐标大于2时,求△ABC面积的最小值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题

(13分)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点

    (1)当A点坐标为(8,4)时,求直线EF的方程;

    (2)当A点坐标为(2,2)时,求直线MN的方程;

    (3)当A点的横坐标大于2时,求△ABC面积的最小值。

 

查看答案和解析>>

同步练习册答案