精英家教网 > 高中数学 > 题目详情
已知非常数函数f(x)=loga
1+kx1-x
(a>0,且a≠1)
(1)若f(x)为奇函数,求k的值.
(2)若f(x)在x∈(1,+∞)上是增函数,求k的取值范围.
分析:(1)由题意可得f(-2)+f(2)=0,化简得
1-4k2
-3
=1,由此解得k 的值.
(2)由题意可得,当x>1时,函数f(x)的导数为 f′(x)=
1-x
1+kx
logae>0.分当a>1时和当
0<a<1两种情况,分别求得k的取值范围.
解答:解:(1)由于非常数函数f(x)=loga
1+kx
1-x
(a>0,且a≠1),若f(x)为奇函数,
则有f(-2)+f(2)=0,即 loga
1-2k
3
+loga
1+2k
-1
=loga
1-4k2
-3
=0,故有
1-4k2
-3
=1,
解得k=1,或k=-1(当k=-1时,函数为常数函数,故舍去).
综上可得,k=1.
(2)若f(x)在x∈(1,+∞)上是增函数,则函数f(x)的导数为 f′(x)=
1-x
1+kx
logae>0.
当a>1时,由题意可得x>1时,
1-x
1+kx
>0,可得 1+kx<0,即 k<
-1
x
,可得k<-1.
当 0<a<1时,由题意可得x>1时,
1-x
1+kx
<0,可得 1+kx>0,即 k>
-1
x
,可得k≥0.
点评:本题主要考查对数函数的图象和性质的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非常数函数f(x)在上可导,当x∈(-∞,1]时,有(1-x)f'(x)≤0,且对任意x∈R都有f(1-x)=f(1+x),则不等式f(2-x)>f(2x+1)的解集是
(-1,
1
3
)
(-1,
1
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知非常数函数f(x)在上可导,当x∈(-∞,1]时,有(1-x)f'(x)≤0,且对任意x∈R都有f(1-x)=f(1+x),则不等式f(2-x)>f(2x+1)的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知非常数函数f(x)=loga
1+kx
1-x
(a>0,且a≠1)
(1)若f(x)为奇函数,求k的值.
(2)若f(x)在x∈(1,+∞)上是增函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省宜昌一中、荆州中学高三(上)联考数学试卷(文科)(解析版) 题型:填空题

已知非常数函数f(x)在上可导,当x∈(-∞,1]时,有(1-x)f'(x)≤0,且对任意x∈R都有f(1-x)=f(1+x),则不等式f(2-x)>f(2x+1)的解集是   

查看答案和解析>>

同步练习册答案