精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{mx}{lnx}$,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)若存在x0∈[e,+∞),使函数g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,求实数a的取值范围.

分析 (1)由题意有:$f′({e}^{2})=\frac{m}{4}$=$\frac{1}{2}$,可得f(x)的解析式;由f′(x)<0得0<x<1或1<x<e,即可求出单调递减区间;
(2)由已知,若存在x0∈[e,+∞),使函数g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,则只需满足当x∈[e,+∞),g(x)min≤a即可

解答 解:(1)函数f(x)的定义域为(0,1)∪(1,+∞),f′(x)=$\frac{m(lnx-1)}{(lnx)^{2}}$,
又由题意有:$f′({e}^{2})=\frac{m}{4}$=$\frac{1}{2}$,所以m=2,f(x)=$\frac{2x}{lnx}$.
此时,f′(x)=$\frac{2(lnx-1)}{(lnx)^{2}}$,由f′(x)<0得0<x<1或1<x<e,
所以函数f(x)的单调递减区间为(0,1)和(1,e).…(5分)
(2)因为g(x)=aelnx+$\frac{1}{2}{x}^{2}$-(a+e)x,
由已知,若存在x0∈[e,+∞),使函数g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,
则只需满足当x∈[e,+∞),g(x)min≤a即可.…(6分)
又g(x)=aelnx+$\frac{1}{2}{x}^{2}$-(a+e)x,
则g′(x)=$\frac{(x-a)(x-e)}{x}$,…(7分)
a≤e,则g′(x)≥0在x∈[e,+∞)上恒成立,
∴g(x)在[e,+∞)上单调递增,
∴g(x)min=g(e)=-$\frac{{e}^{2}}{2}$,
∴a≥-$\frac{{e}^{2}}{2}$,
∵a≤e,
∴-$\frac{{e}^{2}}{2}$≤a≤e.…(9分)
a>e,则g(x)在[e,a)上单调递减,在[a,+∞)上单调递增,
∴g(x)在[e,+∞)上的最小值是g(a),
∵g(a)<g(e),a>e,∴满足题意,
综上所述,a≥-$\frac{{e}^{2}}{2}$.…(12分)

点评 本题主要考查函数、导数等基本知识.考查运算求解能力及化归思想、函数方程思想、分类讨论思想的合理运用,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知抛物线C1,:y2=2px上一点M(3,y0)到其焦点F的距离为4,椭圆C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且过抛物线的焦点F.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线l1交抛物线C1交于A,B两不同点,交y轴于点N,已知$\overrightarrow{NA}$=$λ\overrightarrow{AF}$,$\overrightarrow{NB}$=μ$\overrightarrow{BF}$,求证:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义在正整数集上的函数,且满足:对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立.则下列命题正确的是(  )
A.若f(3)≥9成立,则对于任意k∈N*,均有f(k)≥k2成立
B.若f(3)≥9成立,则对于任意k≥3,k∈N*,均有f(k)<k2成立
C.若f(3)≥9成立,则对于任意k<3,k∈N*,均有f(k)<k2成立
D.若f(3)=9成立,则对于任意k≥3,k∈N*,均有f(k)≥k2成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差数列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)是一次函数,且f(f(x))=4x+1,则f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线l∥平面α,直线a?α,则直线l与直线a的位置关系是(  )
A.l∥aB.l与a没有公共点C.l与a相交D.l与a异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.tan$\frac{11π}{6}$的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围为($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x+2在区间(-∞,1]内递减,那么实数a的取值范围为(  )
A.a≤2B.a≤0C.a≥2D.a≥0

查看答案和解析>>

同步练习册答案