精英家教网 > 高中数学 > 题目详情
已知函数ft(x)=(x-t)2-t(t∈R),设a<b,f(x)=
fa(x),fa(x)<fb(x)
fb(x),fa(x)≥fb(x)
,若函数f(x)+x+a-b有四个零点,则b-a的取值范围是(  )
分析:解方程fa(x)=fb(x)得交点P(
a+b-1
2
,(
b-a-1
2
)2-a)
,函数f(x)的图象与直线l:y=-x+b-a有四个不同的交点,由图象知,点P在l的上方,故
a+b-1
2
+
(
b-a-1
2
)2-a-(b-a)>0
,由此解得b-a的取值范围.
解答:解:作函数f(x)的图象,且解方程fa(x)=fb(x)得x=
a+b-1
2
,即交点P(
a+b-1
2
,(
b-a-1
2
)2-a)

又函数f(x)+x+a-b有四个零点,即函数f(x)的图象与直线l:y=-x+b-a有四个不同的交点.
由图象知,点P在l的上方,所以
a+b-1
2
+
(
b-a-1
2
)2-a-(b-a)>0
,解得b-a>2+
5

故选C.
点评:本题主要考查根的存在性以及根的个数判断,函数的零点与方程的根的关系,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宜宾二模)已知函数ft(x)=
1
1+x
-
1
(1+x)2
(t-x),其中t为正常数.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)设数列{an}满足:a1=
5
3
,3an+1=an+2,(1)求数列{an}的通项公式an; (2)证明:对任意的x>0,
1
an
f
2
3n
(x)(n∈N*);
(Ⅲ)证明:
1
a1
+
1
a2
+…+
1
an
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数ft(x)=
1
1+x
-
1
(1+x)2
(t-x)
,其中t为常数,且t>0.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)数列{an}中,a1=
2
3
,an+1an=2an-an+1,求{an}的通项公式;
(Ⅲ)证明:对任意的x>0,anf
1
2n
(x)
,n=1,2,….

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数ft(x)=
1
1+x
-
1
(1+x)2
(t-x)
,其中t为常数,且t>0.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),且设bn=1-
1
an
,证明:对任意的x>0,bnf
1
2n
(x)
,n=1,2,….

查看答案和解析>>

科目:高中数学 来源:2013年四川省宜宾市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数ft(x)=(t-x),其中t为正常数.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)设数列{an}满足:a1=,3an+1=an+2,(1)求数列{an}的通项公式an; (2)证明:对任意的x>0,(x)(n∈N*);
(Ⅲ)证明:

查看答案和解析>>

同步练习册答案