精英家教网 > 高中数学 > 题目详情
(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2-a2
(2)由(1)类比可得如下真命题:双曲线C:+=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).
【答案】分析:(1)设点P(x,y),x≠±a,依题意,得A(-a,0),B(a,0),从而得直线PA的方程,继而求得点M,N的纵坐标,得到yMyN=,把点P(x,y),代入椭圆方程可求得yMyN==b2,从而得=b2-a2
(2)类比(1)的结论,可得的值.
解答:(1)证明:设点P(x,y),x≠±a,
依题意,得A(-a,0),B(a,0),
∴直线PA的方程为y=(x+a)…(2分)
令x=0,得yM=…(4分)
同理得yN=…(6分)
∴yMyN=
∵点P(x,y)是椭圆C上一点,
=1,=(a2-),
∴yMyN==b2,…(8分)
=(a,yN),=(-a,yM),
=-a2+yMyN=b2-a2…(10分)
(2)-(a2+b2)…(14分)
点评:本题主要考查直线与圆锥曲线、合情推理等基础知识,考查数形结合的数学思想方法,以及推理论证能力、运算求解能力和创新意识,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,且倾斜角为60°的直线l过点(0,-2
3
)
和椭圆C的右焦点F.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若已知D(3,0),点M,N是椭圆C上不重合的两点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆C与椭圆Γ:
x2
8
+
y2
4
=1
相似,且椭圆C的一个短轴端点是抛物线y=
1
4
x2
的焦点.
(Ⅰ)试求椭圆C的标准方程;
(Ⅱ)设椭圆E的中心在原点,对称轴在坐标轴上,直线l:y=kx+t(k≠0,t≠0)与椭圆C交于A,B两点,且与椭圆E交于H,K两点.若线段AB与线段HK的中点重合,试判断椭圆C与椭圆E是否为相似椭圆?并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
1
2
,右焦点为F(1,0).
(I)求椭圆C的方程;
(II)求经过点A(4,0)且与椭圆C相切的直线方程;
(III)设P为椭圆C上一动点,以PF为直径的动圆内切于一个定圆E.求定圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题.
②在平面内,F1、F2是定点,丨F1F2丨=6,动点M满足丨MF1丨-丨MF2丨=4,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5,则方程
x2
5-m
+
y2
m+3
=1是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
⑥椭圆
x2
25
+
y2
9
=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为5.
其中真命题的序号是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

同步练习册答案