精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.

(Ⅰ);(Ⅱ)0.

解析试题分析:(Ⅰ)函数上为增函数,则它的导函数上恒成立,于是问题转化为不等式恒成立问题,这类问题若方便分离参数一般分离参数,若不方便分离参数,则可从函数自身的单调性解决,但往往会涉及分类讨论,较为麻烦,根据题目特点,本题需要采用第二种方法;(Ⅱ)这是一个由方程有解求参数取值范围(或最值)的问题,这类问题若方便分离参一般可分离参数,转化为求函数的值域问题,若不方便分离参数,则根据函数类型,采用数形结合方法解答,本题适合于第一种方法,但本题分离参数后,若直接求的最值,则较为困难,比较巧妙的做法是,将问题转化为求的最值.
试题解析:(I)因为函数上为增函数,所以
上恒成立       
?当时,上恒成立,
所以上为增函数,故 符合题意
?当时,由函数的定义域可知,必须有恒成立,故只能,所以上恒成立
令函数,其对称轴为,因为,所以,要使上恒成立,只要即可,
,所以因为,所以.综上所述,的取值范围为 
(Ⅱ)当时,可化为
问题转化为上有解,
即求函数的值域,

所以当时,上为增函数,当时,上为减函数,因此
,所以,即当时,取得最大值0.
考点:函数的单调性、函数与方程的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若的值域;
(Ⅱ)若存在实数,当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)的值域为[0,+∞),求a的值;
(2)若函数f(x)的函数值均为非负数,求g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足对任意实数都有成立,且当时,,.
(1)求的值;
(2)判断上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数处连续。试证明:处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求的解析式;
(2) 若,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

同步练习册答案