精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2-x+1,则g(x)=f(2x)的递减区间是(  )
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-1]D.[-1,+∞)

分析 设t=2x,R上单调递增,由y=t2-t+1的单调递减区间为(-∞,$\frac{1}{2}$],即可求出g(x)=f(2x)的递减区间.

解答 解:设t=2x,R上单调递增,
由于y=t2-t+1的单调递减区间为(-∞,$\frac{1}{2}$],
∴g(x)=f(2x)的递减区间是(-∞,-1]
故选:C.

点评 本题考查了指数函数和二次函数复合而成的函数,分别利用它们的性质以及复合函数的单调性求解是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2为其左、右焦点,P是椭圆C上一点,PF2⊥x轴,且sin∠PF1F2=$\frac{3}{5}$.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)过焦点F2的直线l与椭圆C相交于点M、N,若△F1MN面积的最大值为6,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),则sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α为锐角,且sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则sinα的值为$\frac{\sqrt{2}+\sqrt{30}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,则tanφ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}}-\frac{1}{x},x≥1}\\{2x+2,x<1}\end{array}\right.$,则f(f(0))=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若两条平行线l1、l2的方程分别是3x+4y+m=0,3mx+8y-4=0,记l1、l2之间的距离为d,则m,d分别为2;$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若复数z满足iz=2+4i,则z的虚部等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校从五月开始,要求高三学生下午2:30前到校,加班班主任李老师下午每天到校,假设李老师和小红同学在下午2:00到2:30之间到校,且每人在该段时间到校都是等可能的,则小红同学比李老师至少早5分钟到校的概率为$\frac{25}{72}$.

查看答案和解析>>

同步练习册答案