精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$运用类比的思想,我们可以解决下面问题:在空间内直角坐标系内,点 P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.

分析 类比点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,可知在空间中,d=$\frac{|6+4+12+4|}{\sqrt{9+16+144}}$=2.

解答 解:类比点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,
可知在空间中,
点P(2,1,1)到平面3x+4y+12z+4=0的距离d=$\frac{|6+4+12+4|}{\sqrt{9+16+144}}$=2.
故答案为:2

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3+ax2-a2x+m(a>0).
(1)若a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;
(2)若对任意的a∈[3,6],不等式f(x)≤1在[-2,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(lg(x+1))的定义域为(0,99],则函数y=f[log2(x+2)]的定义域为(  )
A.(-1,2]B.(-1,3)C.(-2,1]D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a≤3,函数f(x)=x|x-a|-a.
(1)若f(x)为奇函数,求a的值;
(2)若对任意的x∈[2,3],f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某研究机构对高二文科学生的记忆力x和判断力y进行统计分析,得下表数据
X681012
Y2356
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出f'(x)=3x2-6x关于f'(x)=0的线性回归方程x1=0;
(3)试根据(2)求出的线性回归方程,预测记忆力为14的同学的判断力.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.
(Ⅰ)计算渔政船C与渔港O的距离;
(Ⅱ)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?
(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,$\sqrt{11}$≈3.62,$\sqrt{13}$≈3.61)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+sinx+ex•cosx
(1)求该函数的导数f′(x)
(2)求函数f(x)在x=0处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线?:y=x+1与曲线y=ln(x+a)相切,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数g(x) 的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[-$\frac{π}{3}$,$\frac{π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

查看答案和解析>>

同步练习册答案