精英家教网 > 高中数学 > 题目详情
4.某几何体上的三视图如图所示,则该几何体的体积是$\frac{4+π}{3}$.

分析 由三视图可知:该几何体为前后两部分组成,前面是一个三棱锥,后面是一个半圆锥.

解答 解:由三视图可知:该几何体为前后两部分组成,前面是一个三棱锥,后面是一个半圆锥.
∴该几何体的体积V=$\frac{1}{3}×$$\frac{1}{2}×π×{1}^{2}×2$+$\frac{1}{3}×$$\frac{1}{2}×{2}^{2}×2$=$\frac{π+4}{3}$.
故答案为:$\frac{π+4}{3}$.

点评 本题考查了三视图的应用、三棱锥与圆锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是π,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为A,P($\frac{4\sqrt{2}}{3}$,$\frac{b}{3}$)是椭圆C上的一点,以AP为直径的圆经过椭圆C的右焦点F2
(1)求椭圆C的方程;
(2)设F1为椭圆C的左焦点,过右焦点F2的直线l与椭圆C交于不同两点M、N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点P(a,b)在函数y=-x2+3lnx的图象上,点Q(c,d)在函数y=x+2的图象上,则|PQ|的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点P在椭圆上,且△PF1F2是高为$\sqrt{3}$的等边三角形
(1)求椭圆C的方程
(2)已知动点Q(m,n)(mn≠0)在椭圆C上,点A(0,$\sqrt{3}$),直线AQ交x轴于点M,点Q′为点Q关于x轴的对称点,直线AQ′交x轴于点N,若在y轴上存在点K(0,t),使得∠OKM=∠ONK,求满足条件的点K的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的程序框图中,输出的S的值为$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的三边长a,b,c成递减的等差数列,若$B=\frac{π}{4}$,则cosA-cosC=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\root{4}{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x.
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案