精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)设函数,若有两个零点.

i)求的取值范围;

ii)证明:.

【答案】1)见解析;(2)(i;(ii)证明见解析.

【解析】

1,分四种情况讨论即可;

2)(i)由(1)知,且处取得极大值,当时, 时,,所以只需,构造函数解不等式即可;(ii)构造函数,利用导数结合的单调性证明即可.

1

①当时,

上单调递减,在上单调递增;

②当时,,∴上单调递增;

③当时,

,∴上单调递增,在上单调递减;

④当时,

,∴上单调递增,在上单调递减;

2

i)若,则恒成立,上递增,所以至多一个零点,与已知不符合,故

时,

上单调递增,在上单调递减,

所以处取得极大值,为

时,, 当时,

有两个零点,所以只需极大值,即

,所以上单调递减

,所以使得.

ii)结合(i)的分析,不妨设

所以

时,,∴上单调递增.

,且,∴

,∴

,可知均属于

上单调递减,

∴由,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,部分对应值如表,的导函数的图象如图所示. 下列关于函数的结论正确的有(

A.函数的极大值点有

B.函数在是减函数

C.时,的最大值是,则的最大值为4

D.时,函数个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)判断方程内的解的个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)

①甲地5个数据的中位数为24,众数为22;

②乙地5个数据的中位数为27,总体均值为24;

③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.

则肯定进入夏季的地区有_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校共有教职工900,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示. 已知在全体教职工中随机抽取1,抽到第二批次中女教职工的概率是0.16 .

1)求的值;

2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查, 问应在第三批次中抽取教职工多少名?

3)已知,求第三批次中女教职工比男教职工多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形是菱形,四边形是正方形,,点的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知椭圆的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

查看答案和解析>>

同步练习册答案