精英家教网 > 高中数学 > 题目详情
设Sn是等差数列{an}的前n项和,已知S6=36,Sn=324,Sn-6=144,则n=(  )
A、15B、16C、17D、18
分析:根据Sn-Sn-6=an-5+an-4+…+an求得an-5+an-4+…+an的值,根据S6=得a1+a2+…+a6的值,两式相加,根据等差数列的性质可知a1+an=a2+an-1=a6+an-5,进而可知6(a1+an)的值,求得a1+an,代入到数列前n项的和求得n.
解答:解:∵Sn=324,Sn-6=144,
∴Sn-Sn-6=an-5+an-4+…+an=180
又∵S6=a1+a2+…+a6=36,a1+an=a2+an-1=a6+an-5
∴6(a1+an)=36+180=216
∴a1+an=36,由Sn=
(a1+an)n
2
=18n=324

∴n=18
故选D
点评:本题主要考查了等差数列的性质.解题的关键是利用等差数列中若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下四个命题:
①对于任意实数a、b、c,若a>b,c≠0,则ac>bc;
②设Sn 是等差数列{an}的前n项和,若a2+a6+a10为一个确定的常数,则S11也是一个确定的常数;
③关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式
bx-ax+2
>0的解集为(-2,-1);
④对于任意实数a、b、c、d,若a>b>0,c>d则ac>bd.
其中正确命题的是
 
(把正确的答案题号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,S3=3(a2+a8),则
a3
a5
的值为(  )
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,且a4=-4,a9=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则S9=(  )

查看答案和解析>>

同步练习册答案