精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求二面角的余弦值.

(Ⅰ) ∴四边形是平行四边形∴ 平面 (Ⅱ)

解析试题分析:(Ⅰ)证法一:∵,  ∴.
又∵,的中点,    ∴
∴四边形是平行四边形,    ∴
平面平面,    ∴平面.
证法二:∵平面平面平面
,又,∴两两垂直.  
以点E为坐标原点,分别为轴建立如图的空间
直角坐标系.

由已知得,(0,0,2),(2,0,0),
(2,4,0),(0,3,0),(0,2,2),(2,2,0)
,
设平面的法向量为
,即,令,得.
,即.
平面,  ∴平面.
(Ⅱ)由已知得是平面的法向量.  
设平面的法向量为,∵
,即,令,得.
,  ∴二面角的余弦值为
考点:空间线面平行的判定及二面角的求解
点评:利用向量法求解空间几何问题比其他方法思路简单

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1的正方体中.

(Ⅰ)求异面直线所成的角;
(Ⅱ)求证平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。
 
(I)求三棱锥D1—ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA,AC、CB、BP的中点.

(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。

(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)如图,棱锥的底面是矩形,⊥平面

(1)求证:⊥平面
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案