精英家教网 > 高中数学 > 题目详情
20.在△ABC中,A,B,C的对边分别为a,b,c,若a=2$\sqrt{3}$,A=$\frac{π}{3}$,C=$\frac{π}{4}$,则b=$\sqrt{6}+\sqrt{2}$.

分析 求出B,利用正弦定理求解即可.

解答 解:在△ABC中,A,B,C的对边分别为a,b,c,若a=2$\sqrt{3}$,A=$\frac{π}{3}$,C=$\frac{π}{4}$,
可得B=$\frac{5π}{12}$,
由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2\sqrt{3}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{3}}{2}}$=$\sqrt{6}+\sqrt{2}$.
故答案为:$\sqrt{6}+\sqrt{2}$.

点评 本题考查正弦定理的应用,三角形的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点P在单位圆x2+y2=1上运动,P到直线3x-4y-10=0与x=3的距离分为d1、d2,则d1+d2的最小值是5-$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=cosx,g(x)=f(x)-|f(x)|,则函数g(x)的最大值和最小值分别为0,-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x2+4x+7在x∈[-3,2]内值域是[3,19].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆心在直线2x+y=0上的圆C与x轴正半轴相切,且在直线4x-3y-5=0上截得的弦长为2$\sqrt{3}$,则圆C的标准方程为(x-1)2+(y+2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的首项a1=1,其前n项和Sn=$\frac{(n+1){a}_{n}}{2}$.则(1-$\frac{1}{{S}_{2}}$)(1-$\frac{1}{{S}_{3}}$)(1-$\frac{1}{{S}_{4}}$)…(1-$\frac{1}{{S}_{2016}}$)的值为(  )
A.$\frac{2015}{3024}$B.$\frac{2015}{4032}$C.$\frac{1009}{2016}$D.$\frac{1009}{3024}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=3sin(x+20°)+sin(x+80°)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(0<φ<π,ω>0)的最小正周期为π,且f(-x)=f(x),则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}满足a1=1,a3=9,则a2=(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案