精英家教网 > 高中数学 > 题目详情
2.下面五个命题中,其中正确的命题序号为②③⑤.
①若非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,则存在实数λ>0,使得$\overrightarrow b=λ\overrightarrow a$;
②函数 $f(x)=4cos(2x-\frac{π}{6})$的图象关于点$(-\frac{π}{6},0)$对称;
③在△ABC中,A>B?sinA>sinB;
④在$(-\frac{π}{2},\frac{π}{2})$内方程 tanx=sinx有3个解;
⑤若函数y=Acos(ωx+φ)(A>0,ω>0)为奇函数,则φ=kπ+$\frac{π}{2}$(k∈Z).

分析 由条件利用两个向量共线的性质、三角函数的图象和性质、正弦定理,逐一判断各个选项是否正确,从而得出结论.

解答 解:∵若非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$的方向相反,存在实数λ<0,使得$\overrightarrow b=λ\overrightarrow a$,故①不正确.
对于函数 $f(x)=4cos(2x-\frac{π}{6})$,令x=-$\frac{π}{6}$,求得函数的值为零,故函数的图象关于点$(-\frac{π}{6},0)$对称,故②正确.
在△ABC中,A>B?a>b?2RsinA>2RsinB?sinA>sinB,故③正确.
根据在$(-\frac{π}{2},\frac{π}{2})$内,函数y=sinx和函数y=tanx的图象有1个交点,可得方程 tanx=sinx有1个解,故④不正确.
若函数y=Acos(ωx+φ)(A>0,ω>0)为奇函数,则φ=kπ+$\frac{π}{2}$(k∈Z),故⑤正确.
故答案为:②③⑤.

点评 本题主要考查命题真假的判断,两个向量共线的性质、三角函数的图象和性质、正弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若复数z=$\frac{{i}^{2015}}{1-i}$(其中i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC的三内角A,B,C的对边分别为a,b,c,已知:a,b,c成等比数列  
(1)求角B的取值范围;
(2)是否存在实数m,使得不等式(x+3+sin2B)2+[x+$\sqrt{2}$msin(B+$\frac{π}{4}$)]2≥$\frac{1}{8}$对任意的实数x及满足已知条件的所有角B都成立?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等比数列{an}中,an>0,a2=3,a6=243,则该数列的通项公式an=3n-1,数列{log3an}的前n项的和为$\frac{{n}^{2}-n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感a=10b=
不反感c=d=8
合计30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{8}{15}$.
(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
参考数据和公式:
2×2列联表K2公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,K2的临界值表:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.老张身高176cm,他爷爷、父亲、儿子的身高分别是173cm、170cm和182cm,因儿子的身高与父亲的身高有关,用回归分析的方法得到的回归方程为$\widehat{y}$=x+$\widehat{a}$,则预计老张的孙子的身高为(  )cm.
A.182B.183C.184D.185

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足直线:x+ny+2=0和直线:3x+any+3=0平行,数列{bn}的前n项和记为Sn,其中bn=2an,若$\frac{{{S_n}-m{b_n}}}{{{S_n}-m{b_{n+1}}}}<\frac{1}{16}$,则满足条件的正整数对(m,n)=(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天 1 2 34 56
繁殖个数y/个 6 12 25 49  95190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:y=a+bx与y=${C_1}{e^{{C_2}x}}$哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)
$\overline x$$\overline y$$\overline z$$\sum_{i=1}^6{({x_i}-\overline x}{)^2}$$\sum_{i=1}^6{({x_i}-\overline x})({y_i}-\overline y)$$\sum_{i=1}^6{({x_i}-\overline x})({z_i}-\overline z)$
3.562833.5317.5596.50512.04
其中zi=lnyi;$\overline z=\frac{1}{6}\sum_{i=1}^6{z_i}$
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有以下5个命题:
①若P(a,b),Q(c,d)是直线y=kx+m上两个不同的点,则|PQ|可以表示为|c-a|$\sqrt{1+{k}^{2}}$;
②若|$\overrightarrow{a}$|=1.|$\overrightarrow{b}$|=$\sqrt{2}$,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°;
③三角形的三边分别是4,5,6,则该三角形的最大内角是最小内角的两倍;
④在平面直角坐标系中所有直线都有倾斜角,但不是所有直线都有斜率,且倾斜角越大,则斜率越大;
⑤若三角形ABC的重心为P,则$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$.
其中正确的命题是①③⑤.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案