精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

【答案】(1);(2)证明见解析.

【解析】

1)根据离心率和三角形面积可构造关于的方程,解方程可求得,进而得到椭圆方程;(2)假设直线方程,代入椭圆方程,利用韦达定理得到;根据,从而可利用韦达定理形式表示出等式,化简可得;当时,可知过点,不符合题意;所以可知.

(1)由题意可得:

得:

椭圆的方程为

(2)证明:由(1)可得:直线

设直线的方程为,代入椭圆方程

可得

,则

化简可得

时,直线的方程为

则直线经过点,不满足题意

即直线的斜率为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年11月、12月全国大范围流感爆发,为研究昼夜温差大小与患感冒人数多少之间的关系,一兴趣小组抄录了某医院11月到12月间的连续6个星期的昼夜温差情况与因患感冒而就诊的人数得到如下资料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是先从这六组数据中选取2组用剩下的4组数据求线性回归方程再用被选取的2组数据进行检验

(Ⅰ)求选取的2组数据恰好是相邻两个星期的概率;

(Ⅱ)若选取的是第一周与第六周的两组数据请根据第二周到第五周的4组数据,求出关于的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式: )

参考数据: 1092, 498

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了人,按年龄分成5组,第一组: ,第二组: ,第三组: ,第四组: ,第五组: ,得到如图所示的频率分布直方图,已知第一组有6人.

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.

(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;

(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,点是线段上的动点.

1)线段上是否存在点,使得平面?若存在,请写出值,并证明此时,平面;若不存在,请说明理由;

2)已知平面平面,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )

7816

6572

0802

6314

0702

4369

1128

0598

3204

9234

4935

8200

3623

4869

6938

7481

A.08B.07C.02D.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若曲线与直线相切,求的值.

Ⅱ)若求证:有两个不同的零点,且.(为自然对数的底数)

查看答案和解析>>

同步练习册答案