精英家教网 > 高中数学 > 题目详情
用一个边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为1的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为     .

试题分析:由题意知折起后原正方形顶点距离最远的两个相差为1,如下方平面图中的,折起后原正方形顶点到底面的距离为,如下方平面图中的,由下图知鸡蛋中心(球心)与蛋巢底面的距离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).
(1)求此球的体积;
(2)求此球的内接正方体的体积;
(3)求此球的表面积与其内接正方体的全面积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,圆锥形封闭容器,高为h,圆锥内水面高为若将圆锥倒置后,圆锥内水面高为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱中,上的动点.

(1)求五面体的体积;
(2)当在何处时,平面,请说明理由;
(3)当平面时,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中, 平面.
(Ⅰ)求证:平面
(Ⅱ)求棱锥的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若P是两条异面直线l,m外的任意一点,则下列命题
①过点P有且只有一条直线与l,m都平行;
②过点P有且只有一条直线与l,m都垂直;
③过点P有且只有一条直线与l,m都相交;
④过点P有且只有一条直线与l,m都异面。
其中假命题的个数为        (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中,有这样一个定理:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比.请你类比写出在立体几何中,有关四面体的相似性质:               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方体上、下底面中心分别为,将正方体绕直线旋转一周,其中由线段旋转所得图形是(      )

查看答案和解析>>

同步练习册答案