精英家教网 > 高中数学 > 题目详情

【题目】如图,O坐标原点,从直线yx+1上的一点x轴的垂线,垂足记为Q1,过Q1OP1的平行线,交直线yx+1于点,再从P2x轴的垂线,垂足记为Q2,依次重复上述过程得到一系列点:P1Q1P2Q2PnQn,记Pk点的坐标为k123n,现已知x12

1)求Q2Q3的坐标;

2)试求xk1≤kn)的通项公式;

3)点PnPn+1之间的距离记为|PnPn+1|nN*),是否存在最小的正实数t,使得t对一切的自然数n恒成立?若存在,求t的值,若不存在,请说明理由

【答案】(1) Q260),Q3140);(2)1≤kn; (3)存在,

【解析】

1)首先根据OP1P2Q1,计算出Q2的坐标,再根据OP1P3Q2即可计算出Q3的坐标。

2)由Pkxkxk+1),Qk1xk10),OP1PkQk1,可得1,化为xk2xk1+2,利用配凑法即可计算出通项式,

(3)利用|PnPn+1||xn+1xn||2n+22n+1|2n,可得1

1x12,即有P122),Q120),P2x2x2+1),OP1P2Q1

可得1,解得x26,则Q260),由P264),P3x3x3+1),

OP1P3Q2,可得1,解得x314Q3140);

2)由Pkxkxk+1),Qk1xk10),

OP1PkQk1,可得

1,化为xk2xk1+2

即为xk+22xk1+2),

可得数列{xk+2}为首项是4,公比为2的等比数列,

xk+242k1

可得1≤kn

3|PnPn+1|

|xn+1xn||2n+22n+1|2n

1

假设存在最小的正实数t,使得t对一切的自然数n恒成立,

可得t,故存在这样的t,且t的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是底面的中心,是线段的上一点。

(1)若的中点,求直线与平面所成角的正弦值;

(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,圆.

1)求的取值范围,并求出圆心坐标;

2)有一动圆的半径为,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.

(1)求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一列非零向量满足:.

1)写出数列的通项公式;

2)求出向量的夹角,并将中所有与平行的向量取出来,按原来的顺序排成一列,组成新的数列为坐标原点,求点列的坐标;

3)令),求的极限点位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车购买时费用为144万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.

)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;

)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为等腰梯形,,其中点在以为直径的圆上,,平面平面.

1)证明:平面.

2)设点是线段(不含端点)上一动点,当三棱锥的体积为1时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为2.

(1)求椭圆的标准方程;

(2)设直线与椭圆交于两点, 为坐标原点,若,求原点到直线的距离的取值范围.

查看答案和解析>>

同步练习册答案