精英家教网 > 高中数学 > 题目详情

【题目】将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.

【答案】

【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、…、9中每一个值,使不等式成立,则共有45种;当b=6时,a可取3、4…、9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,设内角A、B、C的对边分别为a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线与双曲线交于A,B两点,且点A的横坐标为4.

(1)求的值及B点坐标;

(2)结合图形,直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=cos2x﹣ sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=﹣cos2x﹣ sin2x的图象,则φ的值可以为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为 的中点.将沿折起到的位置,使,如图2,连结

(Ⅰ)求证:平面 平面

(Ⅱ)若中点,求直线与平面所成角的正弦值;

(Ⅲ)线段上是否存在一点,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+c(a>0),
(1)当a=1,b=2,若|f(x)|﹣2=0有且只有两个不同的实根,求实数c的取值范围;
(2)设方程f(x)=x的两个实根为x1 , x2 , 且满足0<t<x1 , x2﹣x1 ,试判断f(t)与x1的大小,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).记Sn=a1+a2+…+an . Tn= + +…+ .求证:当n∈N*
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(1)若点是棱的中点,求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=
(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;
(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1 , x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.

查看答案和解析>>

同步练习册答案