精英家教网 > 高中数学 > 题目详情

【题目】直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.

【答案】
(1)证明:连结DE,交BC于点G.

由弦切角定理得,∠ABE=∠BCE.

而∠ABE=∠CBE,

故∠CBE=∠BCE,BE=CE.

又因为DB⊥BE,

所以DE为直径,∠DCE=90°,

由勾股定理可得DB=DC


(2)解:由(1)知,∠CDE=∠BDE,DB=DC,

故DG是BC的中垂线,

所以BG=

设DE的中点为O,连结BO,则∠BOG=60°.

从而∠ABE=∠BCE=∠CBE=30°,

所以CF⊥BF,

故Rt△BCF外接圆的半径等于


【解析】(1)构造辅助线DE,交BC于点G.由弦切角定理,圆上的同弧,等弧的性质,通过导角,可以得知∠CBE=∠BCE,BE=CE,又因为DE为直径,即∠DCE=90°,由勾股定理可证得DB=DC;(2)由(1)可得DG是BC的中垂线,即可求得BG的长度.设DE的中点为O,连结BO,求得∠BOG=60°,通过导角,可得CF⊥BF,即可求得Rt△BCF外接圆的半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的焦点在圆x2+y2=3上,且离心率为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过原点O的直线l与椭圆C交于AB两点,F为右焦点,若△FAB为直角三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以双曲线 (a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为锐角三角形,则该双曲线的离心率e的范围是( )
A.
B.(
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,方程f(x)=0有3个不同的根.
(1)求实数m的取值范围;
(2)是否存在实数m,使得f(x)在(0,1)上恰有两个极值点x1 , x2且满足x2=2x1 , 若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的偶函数,对于,都有,当时,,若在[-1,5]上有五个根,则此五个根的和是( )

A. 7 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为.

(1)求该椭圆的方程;

(2)若过点的直线与椭圆相交于 两点,且点恰为弦的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角α终边逆时针旋转 与单位圆交于点 ,且
(1)求 的值,
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据条件,求下列曲线的方程.

1已知两定点,曲线上的点距离之差的绝对值为,求曲线的方程

(2)在 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为的椭圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线轴交于两点,点的坐标为,当变化时,解答下列问题:

)能否出现的情况?说明理由.

)证明过三点的圆在轴上截得的弦长为定值.

查看答案和解析>>

同步练习册答案