精英家教网 > 高中数学 > 题目详情

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心,半径为的圆上存在点,使得为坐标原点),求的取值范围.

【答案】1.2

【解析】

1)当直线的斜率不存在时,求得的方程为:,符合题意;当直线的斜率存在时,设的方程,求出点到直线的距离,利用垂径定理列式求得,则直线方程可求;

2)设点的坐标为,求出点与点的坐标,再由,可得,由点在圆上,得,求解得答案.

1)当直线的斜率不存在时,则的方程为:,符合题意.

当直线的斜率存在时,设的方程为:,即

∴点到直线的距离

∵直线被圆截得的弦长为,∴,即

,此时的方程为:

∴所求直线的方程为.

2)设点的坐标为

由题得点的坐标为,点的坐标为

可得

化简可得

∵点在圆上,∴

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司代理销售某种品牌小商品,该产品进价为5元/件,销售时还需交纳品牌使用费3元/件,售价为元/件,其中,且.根据市场调查,当,且时,每月的销售量(万件)与成正比;当,且时,每月的销售量(万件)与成反比.已知售价为15元/件时,月销售量为9万件.

(1)求该公司的月利润(万件)与每件产品的售价(元)的函数关系式;

(2)当每件产品的售价为多少元时,该公司的月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:

直径/mm

58

59

61

62

63

64

65

件数

1

1

3

5

6

19

33

直径/mm

66

67

68

69

70

71

73

合计

件数

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):①;②;③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁.试判断设备的性能等级.

(Ⅱ)将直径尺寸在之外的零件认定为是“次品”,将直径尺寸在之外的零件认定为“突变品”.从样本的“次品”中随意抽取两件,求至少有一件“突变品”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面是边长为的正三角形,直线与平面所成角为.

(I)求证:

(Ⅱ)若,四边形为平行四边形,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,利用斜二侧画法得到水平放置的的直观图,其中轴,轴.若,设的面积为的面积为,记,执行如图②的框图,则输出的值

A. 12B. 10C. 9D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂两条生产线生产同款产品,若产品按照一、二、三等级分类,则每件可分别获利10元、8元、6元,现从生产线的产品中各随机抽取100件进行检测,结果统计如下图:

(1)根据已知数据,判断是否有99%的把握认为一等级产品与生产线有关?

(2)分别计算两条生产线抽样产品获利的方差,以此作为判断依据,说明哪条生产线的获利更稳定?

(3)估计该厂产量为2000件产品时的利润以及一等级产品的利润.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如且等于黄金分割比,现从正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为()

A. B. C. D.

查看答案和解析>>

同步练习册答案