【题目】如图,已知直三棱柱中,,为的中点,,求证: (1);
(2)∥平面。
【答案】(1)见解析(2)见解析
【解析】
(1)建立空间直角坐标系,设立各点坐标,利用向量数量积证明线线垂直,(2)建立空间直角坐标系,设立各点坐标,利用向量共线证明线线平行,再根据线面平行判定定理得结果.
证明:如图,以C1点为原点,C1A1,C1B1,C1C所在直线分别为x轴、y轴、z轴建立空间直角坐标系.
设AC=BC=BB1=2,
则A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2)。
(1)由于=(0,-2,-2),=(-2,2,-2),
所以 =0-4+4=0,
因此⊥,故BC1⊥AB1.
(2)连接A1C,取A1C的中点E,连接DE,由于E(1,0,1),所以=(0,1,1),又=(0,-2,-2),
所以=-,又ED和BC1不共线,
所以ED∥BC1,又DE平面CA1D,
BC1平面CA1D,故BC1∥平面CA1D.
科目:高中数学 来源: 题型:
【题目】已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的外接圆半径,角A、B、C的对边分别是a、b、c,且.
(I)求角B和边长b;
(II)求面积的最大值及取得最大值时的a、c的值,并判断此时三角形的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比例 | 1 |
该公司从注册的会员中,随机抽取了位进行统计,得到统计数据如下:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
频数 |
假设汽车美容一次,公司成本为元.根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)该公司从至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品.求抽出的2人中恰有1人消费两次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示
参加社团活动 | 不参加社团活动 | 合计 | |
学习积极性高 | 17 | 8 | 25 |
学习积极性一般 | 5 | 20 | 25 |
合计 | 22 | 28 | 50 |
(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
x2= .
P(x2≥k) | 0.05 | 0.01 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为 , 求a+c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)﹣f(x)<0,记a= ,b= ,c= ,则( )
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com