精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直三棱柱中,的中点,,求证: (1)

(2)∥平面

【答案】(1)见解析(2)见解析

【解析】

(1)建立空间直角坐标系,设立各点坐标,利用向量数量积证明线线垂直,(2)建立空间直角坐标系,设立各点坐标,利用向量共线证明线线平行再根据线面平行判定定理得结果.

证明:如图,以C1点为原点,C1A1C1B1C1C所在直线分别为x轴、y轴、z轴建立空间直角坐标系.

ACBCBB1=2

A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2)。

(1)由于=(0,-2,-2),=(-2,2,-2),

所以 =0-4+4=0,

因此,故BC1AB1.

(2)连接A1C,取A1C的中点E,连接DE,由于E(1,0,1),所以=(0,1,1),又=(0,-2,-2),

所以=-,又EDBC1不共线,

所以EDBC1,又DE平面CA1D

BC1平面CA1D,故BC1平面CA1D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的外接圆半径,角ABC的对边分别是abc,且.

I)求角B和边长b

II)求面积的最大值及取得最大值时的ac的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k的值为(  )

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:

消费次第

第1次

第2次

第3次

第4次

≥5次

收费比例

1

该公司从注册的会员中,随机抽取了位进行统计,得到统计数据如下:

消费次第

第1次

第2次

第3次

第4次

第5次

频数

假设汽车美容一次,公司成本为元.根据所给数据,解答下列问题:

(1)估计该公司一位会员至少消费两次的概率;

(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;

(3)该公司从至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品.求抽出的2人中恰有1人消费两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示

参加社团活动

不参加社团活动

合计

学习积极性高

17

8

25

学习积极性一般

5

20

25

合计

22

28

50

(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
x2=

P(x2≥k)

0.05

0.01

0.001

K

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为 , 求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)﹣f(x)<0,记a= ,b= ,c= ,则(
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a

查看答案和解析>>

同步练习册答案