精英家教网 > 高中数学 > 题目详情

直线x=t过双曲线(a>0,b>0)的右焦点且与双曲线的两条渐近线分别交于A,B两点,若原点在以AB为直径的圆外,则双曲线离心率的取值范围是

[  ]

A.(1,+∞)

B.(1,)

C.(1,)

D.(1,1+)

练习册系列答案
相关习题

科目:高中数学 来源:天利38套《2008全国各省市高考模拟试题汇编 精华大字版》、数学理 题型:044

若F1、F2分别为双曲线的左、右焦点,O为坐标原点,E在双曲线的左支上,点M在右准线上,且满足(λ>0).

(Ⅰ)求此双曲线的离心率;

(Ⅱ)若此双曲线过点(),直线l过其右焦点且与右支交于P、Q两点,若线段PQ的中点R在直线x=t(t≤1)上的射影C满足PC⊥QC,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省高安中学2012届高三第三次模拟考试数学文科试题 题型:044

已知椭圆=1(a>b>0)长轴上有一倾点到两个焦点之间的距离分别为:3+2,3-2

(1)求椭圆的方程;

(2)如果直线x=t(teR)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;

(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,、若=λ=μ,求证:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省、临川一中高三8月联考理科数学试卷(解析版) 题型:解答题

设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.

(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;

(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;

(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求||(T为(1)中的点)的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

22.已知倾斜角为45°的直线l过点A(1,-2)和点B,B在第一象限,|AB|=3.

(1)求点B的坐标;

(2)若直线l与双曲线C:y2=1(a>0)相交于EF两点,且线段EF的 中点坐标为(4,1),求a的值;

(3)对于平面上任一点P,当点Q在线段AB上运动时,称|PQ|的最小值为与线段AB的距离.已知点Px轴上运动,写出点P(t,0)到线段AB的 距离h关于t的函数关系式.

查看答案和解析>>

同步练习册答案