精英家教网 > 高中数学 > 题目详情
12.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\widehaty=\widehatbx+\widehata$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

分析 (Ⅰ)求出回归系数,即可求出利润额y对销售额x的回归直线方程$\widehaty=\widehatbx+\widehata$;
(Ⅱ)x=4代入,即可得出结论.

解答 解:(Ⅰ)设回归直线的方程是:$\widehaty=bx+a$,$\overline y=3.4,\overline x=6$,
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{4.2+0.4+0.6+4.8}{9+1+1+9}$=0.5,$\widehata=\overline y-\widehatb\overline x$=0.4,
∴y对销售额x的回归直线方程为:$\stackrel{∧}{y}$=0.5x+0.4;------(8分)
(Ⅱ)当销售额为4(千万元)时,利润额为:$\stackrel{∧}{y}$=0.5×4+0.4=2.4(千万元).---(12分)

点评 本题考查回归方程及运用,考查学生的计算能力,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$),∠AOB=α.
(1)求$\frac{5cosα+6sinα}{4cosα-3sinα}$的值;
(2)设∠AOP=θ($\frac{π}{6}$≤θ≤$\frac{2π}{3}$),$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四边形OAQP的面积为S,f(θ)=($\overrightarrow{OA}$•$\overrightarrow{OQ}$-$\frac{1}{2}$)2+2S2-$\frac{1}{2}$,求f(θ)的最值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则cosθ=$\frac{{7\sqrt{2}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设偶函数f(x)满足f(x)=2-x-4(x≤0),则{x|f(x-2)>0}=(  )
A.{x|x<-2或x>4}B.{x|x<-2或x>2}C.{x|x<0或x>4}D.{x|x<0或x>6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某车间加工零件的数量x与加工时间y的统计数据如表:
零件数x(个)182022
加工时间y(分钟)273033
现已求得如表数据的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}{b}$值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为102分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列方程表示的直线倾斜角为135°的是(  )
A.y=x-1B.y-1=$\frac{\sqrt{2}}{2}$(x+2)C.$\frac{x}{5}$+$\frac{y}{5}$=1D.$\sqrt{2}$x+2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,记a=-log23•f(log${\;}_{\frac{1}{3}}$2),b=f(1),c=4f(0.52),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆(x-1)2+y2=4上一动点Q,则点P(-2,-3)到点Q的距离的最小值为$3\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ln(2x-m)的定义域为集合A,函数g(x)=$\sqrt{3-x}$-$\frac{1}{{\sqrt{x-1}}}$的定义域为集合B.
(Ⅰ)若B⊆A,求实数m的取值范围;
(Ⅱ)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

同步练习册答案