精英家教网 > 高中数学 > 题目详情
14.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{\sqrt{10}}{10}$,则实数m=$\sqrt{10}$.

分析 椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1焦点在x轴上,得a2=m2,b2=9,e2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{m}^{2}-9}{{m}^{2}}=\frac{1}{10}$⇒m的值.

解答 解:∵椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1焦点在x轴上,
∴a2=m2,b2=9,e2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{m}^{2}-9}{{m}^{2}}=\frac{1}{10}$⇒m=$\sqrt{10}$,
故答案为:$\sqrt{10}$.

点评 本题考查了椭圆的离心率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=${log_{\frac{1}{2}}}$x-(${\frac{1}{2}$)x的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由曲线y=x2与直线y=3x所围成的图形的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的$\frac{2}{3}$倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润.该公司如何正确规划投资,才能在这两个项目上共获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex+a-lnx.
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)当a≥-2时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=12,S4=20;数列{bn}满足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(x+a)-x有且只有一个零点,其中a>0.
(1)求a的值;
(2)设函数h(x)=f(x)+x,证明:对?x1,x2∈(-1,+∞)(x1≠x2),不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆的一个焦点与两顶点为等边三角形的一个顶点,则该椭圆的长轴长是短轴长的(  )
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和Tn.若${T_n}≤\frac{2014}{2015}$,求整数n的最大值.

查看答案和解析>>

同步练习册答案