精英家教网 > 高中数学 > 题目详情
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.
(1);(2)f(x)的单调递增区间是(kπ-,kπ+),k∈Z;f(x)的单调递减区间是(kπ+,kπ+),k∈Z;函数f(x)的对称轴为,k∈Z;函数f(x)的对称中心为 ,k∈Z  .

试题分析:(1)根据向量数量积的坐标运算得到函数的解析式,化为标准式,然后利用周期公式来求;(2) 根据正弦曲线的单调区间:单调递增,单调递减求目标函数的单调区间,对称轴是根据来求;对称中心是根据来求.
试题解析:(1)因为m·n=2sinxcosx+2cos2x               2分
=sin2x+cos2x+1,                            4分
所以f(x)=2sin(2x+),
故T==π.                                     6分
(2)f(x)的单调递增区间是(kπ-,kπ+),k∈Z,     8分
f(x)的单调递减区间是(kπ+,kπ+),k∈Z.       10分
函数f(x)的对称轴为,k∈Z,         12分
函数f(x)的对称中心为 ,k∈Z       14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量
(Ⅰ)当时,求函数的值域;
(Ⅱ)不等式,当时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最小正周期及单调递减区间;
(2)若在区间上的最大值与最小值的和为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量为共线向量,且.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数在区间上的零点;
(Ⅱ)设,求函数的图象的对称轴方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设当时,函数取得最大值,则______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是第三象限角,且的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

E,F是等腰直角△ABC斜边BC上的四等分点,则=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则=(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案