精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

【答案】
(1)解:由集合B中的不等式2x﹣4≥x﹣2,解得x≥2,

∴B={x|x≥2},又A={x|﹣1≤x<3},

∴A∩B={x|2≤x<3},又全集U=R,

U(A∩B)={x|x<2或x≥3}


(2)解:由集合C中的不等式2x+a>0,解得x>﹣

∴C={x|x>﹣ },

∵B∪C=C,

∴BC,

∴﹣ <2,解得a>﹣4;

故a的取值范围为(﹣4,+∞)


【解析】(1)求出集合B中不等式的解集确定出集合B,求出集合A与集合B的公共解集即为两集合的交集,根据全集为R,求出交集的补集即可;(2)求出集合C中的不等式的解集,确定出集合C,由B与C的并集为集合C,得到集合B为集合C的子集,即集合B包含于集合C,从而列出关于a的不等式,求出不等式的解集即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量=(2cos sin),=(cos,2cos),(ω>0),设函数f(x)=,且f(x)的最小正周期为π.

(1)求函数f(x)的表达式;

(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如下表:

甲企业:

乙企业:

(1)已知甲企业的500件零件质量指标值的样本方差,该企业生产的零件质量指标值服从正态分布,其中近似为质量指标值的样本平均数(注:求时,同一组数据用该区间的中点值作代表),近似为样本方差,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率.(精确到0.001)

(2)由以上统计数据完成下面列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”.

附注:

参考数据:

参考公式:

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现如今网上购物已经习以为常,变成人们日常生活的一部分,冲击着人们的传统消费习惯思维生活方式,以其特殊的优势而逐渐深入人心.某市场调研机构对在双十一购物的名年龄在消费者进行了年龄段和性别分布的调查,其部分结果统计如下表:

年龄(岁)

70

50

40

30

20

30

20

15

10

(1)若按年龄用分层抽样的方法抽取84个人其中内抽取了36的值

(2)在(1)的条件下,用分层抽样的方法在消费者中抽取一个容量为8的本将该样本看成一个总体从中任取3表示抽得女性消费者的人数,随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体中,四边形与四边形均为边长为2的正方形,为等腰直角三角形,,且平面平面,平面平面

(1)求证:平面平面

(2)求多面体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:恒等于常数,则称具有局部等差数列.

1)若具有局部等差数列,且,求

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,判断是否具有局部等差数列,并说明理由;

3)设既具有局部等差数列,又具有局部等差数列,求证具有局部等差数列.

查看答案和解析>>

同步练习册答案