精英家教网 > 高中数学 > 题目详情

【题目】如图,多面体中,底面为菱形,,且平面底面,平面底面

(1)证明:平面

(2)求二面角的余弦值

【答案】(1)见解析(2)

【解析】

(1)要证平面,将其转化到的平行线上,分别过点的垂线,垂足为,连接,过点,垂足为,下证,继而求证结果

(2)以为原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,运用二面角夹角公式求出结果

(1)分别过点的垂线,垂足为,连接

因为平面底面,平面底面

所以平面,又平面

所以

同理可证,平面,所以.

过点,垂足为

中,,则

,所以,又

所以四边形为平行四边形,则.

从而,又

所以平面,故平面.

(2)为原点,建立空间直角坐标系如图所示

由(1)知,则

所以.

设平面的一个法向量为,则,即

解得

,则,所以.

设平面的一个法向量为,则,即

解得

,则,所以.

从而,故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数fxxR),有下述四个结论:

①任意xR,等式f(﹣x+fx)=0恒成立;

②任意x1x2R,若x1x2,则一定有fx1fx2);

③存在m∈(01),使得方程|fx|m有两个不等实数根;

④存在k∈(1+∞),使得函数gx)=fx)﹣kxR上有三个零点.

其中包含了所有正确结论编号的选项为(

A.①②③④B.①②③C.①②④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年,“非典”爆发,以钟南山为代表的医护工作者经长期努力,抗击了非典.岁高龄的钟院士再次披挂上阵,逆行武汉抗击新冠疫情。为调查中学生对这一伟大“逆行者”的了解程度,某调查小组随机抽取了某市物化生、政史地的名高中生,请他们列举钟南山院士在医学上的成就,把能列举钟南山成就不少于项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

组合

0

1

2

3

4

5

5项以上

物化生(人)

1

10

17

14

14

10

4

政史地(人)

0

8

10

6

3

2

1

1)请将下面的2×2列联表补充完整;

组合

比较了解

不太了解

合计

物化生

政史地

合计

2)判断是否有99%的把握认为,了解钟南山与选择物化生、政史地组合有关?

参考:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数yf(x)的导函数的图象如图所示,给出下列判断:

①函数yf(x)在区间内单调递增;

②函数yf(x)在区间内单调递减;

③函数yf(x)在区间(4,5)内单调递增;

④当x2时,函数yf(x)有极小值;

⑤当x时,函数yf(x)有极大值.

则上述判断中正确的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,,其中为常数.

(1)成等比数列,求的值

(2)是否存在,使得数列为等差数列?并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级三个班共有学生120名,这三个班的男女生人数如下表所示,已知在全年级中随机抽取1名学生,抽到二班女生的概率是0.2,则_________.现用分层抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为________.

一班

二班

三班

女生人数

20

男生人数

20

20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是自然对数的底数)

(1)求证:

(2)若不等式上恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇,与此同时,相关管理部门推出了针对电商商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品好评率为,对服务好评率为,其中对商品和服务都做出好评的交易为80次.

(1)是否可以在犯错误率不超过0.1%的前提下,认为商品好评与服务好评有关?

(2)若针对商品的好评率,采用分层抽样的方式这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

注:1.

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

注:2..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 Aab),抛物线Ca ≠0 , b ≠0 , a ≠2p).过点 A 作直线l ,交抛物线 C 于点PQ .如果以线段 PQ 为直径的圆过抛物线C 的顶点,求直线 l 的方程

查看答案和解析>>

同步练习册答案