【题目】如图1,在平行四边形中,,,,、分别为、的中点,现把平行四边形1沿折起如图2所示,连接、、.
(1)求证:;
(2)若,求二面角的正弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)取的中点,连接,,,根据条件可得,为正三角形,则,,可得平面从而得证;
(2)由勾股定理可得,以为原点,以,,为轴建立空间直角坐标系,分别求得平面AB1C和平面A1B1A的法向量,由法向量求二面角的余弦即可,从而得正弦值.
试题解析:
证明:(1)取的中点,连接,,,
∵在平行四边形中,,,,
、分别为、的中点,
∴,为正三角形,
则,,又∵,
∴平面,
∵平面
∴;
(2)∵,,,、分别为、的中点,
∴,,
∵,则,
则三角形为直角三角形,则,
以为原点,以,,为轴建立空间直角坐标系,
则,,,,
则
则,,,
设平面的法向量为,
则,
令,则,,
则,
设平面的法向量为,则,
令,则,,即,
则
∴二面角的正弦值是.
科目:高中数学 来源: 题型:
【题目】设函数. 若曲线y=在点P(e,f(e))处的切线方程为y=2x-e(为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试比较与的大小,并予以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数再取整,绘制成如下茎叶图,规定不低于85分(百分制)为优秀,甲班同学成绩的中位数为74.
(1)求的值和乙班同学成绩的众数;
(2)完成表格,若有以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大改革面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构随机调查了岁到岁之间的位网上购物者的年龄分布情况,并将所得数据按照,,,,分成组,绘制成频率分布直方图(如图).
(1)求频率分布直方图中实数的值及这位网上购物者中年龄在内的人数;
(2)现采用分层抽样的方法从参与调查的位网上购物者中随机抽取人,再从这人中任选人,设这人中年龄在内的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.
(1)求椭圆的标准方程;
(2)若过点的直线与椭圆相交于不同两点、,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组 | ||||||
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com