精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=-an-(
1
2
)n-1+2
(n为正整数).
(1)求数列{an}的通项公式;
(2)令cn=
n+1
n
an
,Tn=c1+c2+…+cn,求Tn的值.
分析:(1)在Sn=-an-(
1
2
)n-1+2
中,令n=1,得a1=
1
2
.当n≥2时,Sn-1=-an-1-(
1
2
)n-2+2
,所以an=Sn-Sn-1=-an+an-1+(
1
2
)n-1
,由bn=2nan,知bn=bn-1+1,即当n≥2时,bn-bn-1=1.由此能求出数列{an}的通项公式.
(2)由cn=
n+1
n
an=(n+1)(
1
2
)n
,知Tn=2×
1
2
+3×(
1
2
)2+4×(
1
2
)3+…+(n+1)(
1
2
)n
,由错位相减法能够求出Tn的值.
解答:解:(1)在Sn=-an-(
1
2
)n-1+2
中,
令n=1,可得S1=-a1-1+2=a1
a1=
1
2

当n≥2时,Sn-1=-an-1-(
1
2
)n-2+2

an=Sn-Sn-1=-an+an-1+(
1
2
)n-1

2an=an-1+(
1
2
)n-1,即2nan=2n-1an-1+1

∵bn=2nan,∴bn=bn-1+1,
即当n≥2时,bn-bn-1=1.
又b1=2a1=1,
∴数列{bn}是首项和公差均为1的等差数列.
于是bn=1+(n-1)•1=n=2nan
an=
n
2n

(2)由(1)得cn=
n+1
n
an=(n+1)(
1
2
)n

所以Tn=2×
1
2
+3×(
1
2
)2+4×(
1
2
)3+…+(n+1)(
1
2
)n
1
2
Tn=2×(
1
2
)2+3×(
1
2
)3+4×(
1
2
)4+…+(n+1)(
1
2
)n+1

由①-②得
1
2
Tn=1+(
1
2
)2+(
1
2
)3+…+(
1
2
)n-(n+1)(
1
2
)n+1

=1+
1
4
[1-(
1
2
)
n-1
]
1-
1
2
-(n+1)(
1
2
)n+1=
3
2
-
n+3
2n+1
Tn=3-
n+3
2n
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案