精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知是矩形,平面的中点.

(1)求证:平面
(2)求直线与平面所成的角.
(1)见解析;  (2)直线与平面所成的角为
本试题主要是考查了线面垂直的证明以及线面角的求解的综合运用。
(1)要证平面,根据已知

,从而得到线线垂直,得线面垂直。
(2)与面所成的角。
,那么利用直角三角形可知直线与平面所成的角.
(1)



(2)与面所成的角。

直线与平面所成的角为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是边长为2的菱形,且,M是AB的中点,

(1)求证:平面ABC;
(2)求点M到平面AA1C1C的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BEBCFCE的中点,求证:
(1) AE∥平面BDF
(2) 平面BDF⊥平面BCE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,的交点为为侧棱上一点.

(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.

(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PAk·AB,且二面角E-BD-C的平面角大于,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在如图所示的几何体中,四边形为正方形,平面


(Ⅰ)若点在线段上,且满足,求证:平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示不同的直线,表示不同的平面,给出下列四个命题:
①若,且;         
②若,且.则
③若,则∥m∥n;
④若且n∥,则∥m.
其中正确命题的个数是
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线与平面有以下三个命题
⑴若
⑵若
⑶若,其中真命题有
A.1个B.2个C.3个D.0个

查看答案和解析>>

同步练习册答案