精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.

⑴求椭圆的标准方程;

⑵若,求的值;

⑶设直线的斜率分别为 ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.

【答案】123

【解析】试题分析:(1);(2)由椭圆对称性,知,所以此时直线方程为. (3,则通过直线和椭圆方程,解得 所以即存在

试题解析:

1)设椭圆方程为,由题意知:

解之得: ,所以椭圆方程为:

2)若,由椭圆对称性,知,所以

此时直线方程为

,得,解得舍去),

3)设,则

直线的方程为,代入椭圆方程,得

     

因为是该方程的一个解,所以点的横坐标

在直线上,所以

同理, 点坐标为

所以

即存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(I) 极大值;

(II) 求证:,其中,

(III)若方程有两个不同的根, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,过点分别作两平行直线 与椭圆相交于两点, 与椭圆相交于两点,且当直线过右焦点和上顶点时,四边形的面积为.

(1)求椭圆的标准方程;

(2)若四边形是菱形,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+4-m2i,其中i为虚数单位,当实数m取何值时,复数z对应的点:

1)位于虚轴上;

2)位于一、三象限;

3)位于以原点为圆心,以4为半径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线经过抛物线的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为4.

(1)求抛物线的方程;

(2)已知,过的直线与抛物线相交于两点,设直线的斜率分别为,求证:为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ 的右焦点为F,过点F且斜率为k的直线与椭圆Γ交于A(x1, y1)B(x2, y2)两点(Ax轴上方),点A关于坐标原点的对称点为P,直线PAPB分别交直线lx=4MN两点,记MN两点的纵坐标分别为yMyN

(1) 求直线PB的斜率(k表示)

(2) 求点MN的纵坐标yMyN (x1, y1表示) ,并判断yM yN是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

同步练习册答案