【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.
⑴求椭圆的标准方程;
⑵若,求的值;
⑶设直线, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率,过点、分别作两平行直线、, 与椭圆相交于、两点, 与椭圆相交于、两点,且当直线过右焦点和上顶点时,四边形的面积为.
(1)求椭圆的标准方程;
(2)若四边形是菱形,求正数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=2m+(4-m2)i,其中i为虚数单位,当实数m取何值时,复数z对应的点:
(1)位于虚轴上;
(2)位于一、三象限;
(3)位于以原点为圆心,以4为半径的圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线经过抛物线的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为4.
(1)求抛物线的方程;
(2)已知,过的直线与抛物线相交于两点,设直线与的斜率分别为和,求证:为定值,并求出定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Γ: 的右焦点为F,过点F且斜率为k的直线与椭圆Γ交于A(x1, y1)、B(x2, y2)两点(点A在x轴上方),点A关于坐标原点的对称点为P,直线PA、PB分别交直线l:x=4于M、N两点,记M、N两点的纵坐标分别为yM、yN.
(1) 求直线PB的斜率(用k表示);
(2) 求点M、N的纵坐标yM、yN (用x1, y1表示) ,并判断yM yN是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com