精英家教网 > 高中数学 > 题目详情
设函数f(x)=tx2+2t2x+t-1(x∈[-1,1]).
(1)若t>0,求f(x)的最小值h(t);
(2)对于(1)中的h(t),若t∈(0,2]时,h(t)<-2t+m2+4m恒成立,求实数m的取值范围.
(1)∵f(x)=t(x+t)2-t3+t-1,
①若-t<-1,即t>1时,f(x)在[-1,1]上单调递增,f(x)的最小值为f(-1)=-2t2+2t-1;
②若-1≤-t<0,即0<t≤1时,则f(x)在[-1,1]上的最小值为f(-t)=-t3+t-1;
h(t)=
-t3+t-1
-2t2+2t-1
t∈(0, 1]
  t∈(1,+∞)
.                (6分)
(2)令g(t)=h(t)+2t=
-t3+3t-1
-2t2+4t-1
t∈(0, 1]
  t∈(1, 2]
.  (7分)
①0<t≤1时,由g′(t)=-3t2+3≥0,
∴g(t)在(0,1]单调递增;(9分)
②1<t≤2时,g(t)=-2t2+4t-1=-2(t-1)2+1g(t)在(1,2]上单调递减,
由①、②可知,g(t)在区间(0,2]上的最大值为g(1)=1.(11分)
所以h(t)<-2t+m2+4m在(0,2]内恒成立,等价于g(t)<m2+4m在(0,2]内恒成立,
即只要1<m2+4m,
解m2+4m-1>0得:m<-2-
5
m>-2+
5

所以m的取值范围为(-∞, -2-
5
)∪(-2+
5
, +∞)
.        (14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长宁区一模)设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=
32
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,若存在g(x)使得g(x)≤f(x)恒成立,则称g(x)是f(x)的一个“下界函数”.
(Ⅰ)如果函数g(x)=
t
x
-lnx(t为实数)为f(x)的一个“下界函数”,求t的取值范围;
(Ⅱ)设函数F(x)=f(x)-
1
ex
+
2
ex
,试问函数F(x)是否存在零点,若存在,求出零点个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)(理)若f(1)=
32
,且g(x)=a2x+a-2x-2m•f(x)在[1,+∞)上的最小值为-2,求m的值.
(文)若f(1)<0,试说明函数f(x)的单调性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州市高三第二次调研数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江21中高三(上)12月月考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

同步练习册答案