精英家教网 > 高中数学 > 题目详情

研究问题:“已知关于的不等式的解集为(1,2),解关于的不等式”,有如下解法:

解:由,则

所以不等式的解集为

参考上述解法,已知关于x的不等式的解集为(-3,-1)∪(2,3),

则关于x的不等式的解集为                    .

 

【答案】

【解析】

试题分析:由于根据已知的解法,和x的不等式的解集为(-3,-1)∪(2,3),可知用-替换x,不等式可化为,可得(-3,-1)∪(2,3),可得x,故答案为

考点:本试题主要考查了不等式的解集的求解,是一个创新的试题。

点评:解决该试题的关键是读懂题意,将方程问题和不等式问题进行转化,利用二次不等式的解集问题和分式不等式的化简整式不等式的思想来解得。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
2
, 1)
,所以不等式cx2-bx+a>0的解集为(
1
2
, 1)

参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),求关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),则关于x的不等式cx2-bx+a>0有如下解法:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
2
,1)
,所以不等式cx2-bx+a>0的解集为(
1
2
,1)
.参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),则关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集
 

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,3),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
3
, 1)
,所以不等式cx2-bx+a>0的解集为(
1
3
, 1)

参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),则关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:由ax2-bx+c⇒a-b(
1
x
)+c(
1
x
2>0,令y=
1
x
,则y∈(
1
2
,1)
,所以不等式cx2-bx+a>0的解集为(
1
2
,1).类比上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-3,-2)∪(1,2),则关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集为
(-1,-
1
2
)∪(
1
3
1
2
(-1,-
1
2
)∪(
1
3
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的方程ax2-bx+c=0的解集为{1,2},解关于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,则y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集为{
1
2
, 1}

参考上述解法,已知关于x的方程4x+3•2x+x-91=0的解为x=3,则
关于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解为
x=-
1
8
x=-
1
8

查看答案和解析>>

同步练习册答案